66 research outputs found

    Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment

    Get PDF
    The establishment of riparian pioneer vegetation is of crucial importance within river restoration projects. After germination or vegetative reproduction on river bars juvenile plants are often exposed to mortality by uprooting caused by floods. At later stages of root development vegetation uprooting by flow is seen to occur as a consequence of a marked erosion gradually exposing the root system and accordingly reducing the mechanical anchoring. How time scales of flow-induced uprooting do depend on vegetation stages growing in alluvial non-cohesive sediment is currently an open question that we conceptually address in this work. After reviewing vegetation root issues in relation to morphodynamic processes, we then propose two modelling mechanisms (Type I and Type II), respectively concerning the uprooting time scales of early germinated and of mature vegetation. Type I is a purely flow-induced drag mechanism, which causes alone a nearly instantaneous uprooting when exceeding root resistance. Type II arises as a combination of substantial sediment erosion exposing the root system and resulting in a decreased anchoring resistance, eventually degenerating into a Type I mechanism. We support our conceptual models with some preliminary experimental data and discuss the importance of better understanding such mechanisms in order to formulate sounding mathematical models that are suitable to plan and to manage river restoration projects

    Zugang zur Hebammenhilfe - die Perspektive von Frauen*in Lebenslagen mit psychosozialen Belastungsfaktoren : eine qualitative Studie

    Get PDF
    Hintergrund: Frauen in belasteten Lebenslagen haben einen erhöhten Unterstützungsbedarf, nehmen aber seltener Hebammenhilfe in Anspruch. Es ist wenig über Gründe dieser Ungleichheiten bei der Inanspruchnahme aus Sicht der Frauen bekannt. Ziele/ Forschungsfrage: Die Studie analysiert Einflussfaktoren des Zugangs zur Hebammenhilfe aus Perspektive von Frauen in belasteten Lebenslagen. Methode: Es wurden 13 leitfadengestützte Interviews mit zwei Schwangeren und elf Müttern geführt. Diese wurden inhaltsanalytisch ausgewertet. Basis für die Bildung von Kategorien stellten die Dimensionen des Frameworks für den Zugang zur Gesundheitsversorgung dar. Ergebnisse: Aus Perspektive der befragten Frauen wird der Zugang zur Hebammenhilfe vom Zufall bestimmt und wird als Glück erfahren. Grundsätzlich ist Hebammenhilfe für die befragten Frauen mit Wohlbefinden und Zunahme der Selbstkompetenzen assoziiert. Negative Erfahrungen mit Hebammen können zum Erleben von Abweisung und Ablehnung des Versorgungsangebotes führen. Diskussion/Schlussfolgerungen: Die mangelnde Verfügbarkeit von Hebammenhilfe für Frauen in belastenden Lebenslagen sollte garantiert werden, damit der erschwerte Zugang nicht zur Erfahrung von Ohnmacht führt

    Stability analysis of ecomorphodynamic equations

    Get PDF
    In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding

    The role of river morphodynamic disturbance and groundwater hydrology as driving factors of riparian landscape patterns in mediterranean rivers

    Get PDF
    Original ResearchFluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effectinfo:eu-repo/semantics/publishedVersio

    Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges

    Get PDF
    Citation: Ruiz-Villanueva, V., Piégay, H., Gurnell, A. A., Marston, R. A., & Stoffel, M. (2016). Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics. doi:10.1002/2015RG000514Large wood is an important physical component of woodland rivers and significantly influences river morphology. It is also a key component of stream ecosystems. However, large wood is also a source of risk for human activities as it may damage infrastructure, block river channels, and induce flooding. Therefore, the analysis and quantification of large wood and its mobility are crucial for understanding and managing wood in rivers. As the amount of large-wood-related studies by researchers, river managers, and stakeholders increases, documentation of commonly used and newly available techniques and their effectiveness has also become increasingly relevant as well. Important data and knowledge have been obtained from the application of very different approaches and have generated a significant body of valuable information representative of different environments. This review brings a comprehensive qualitative and quantitative summary of recent advances regarding the different processes involved in large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First, some key definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are reviewed; in particular, how measurements and modeling can be combined to integrate our understanding of how large wood moves through and is retained within river systems. Throughout, we present a quantitative and integrated meta-analysis compiled from different studies and geographical regions. Finally, we conclude by highlighting areas of particular research importance and their likely future trajectories, and we consider a particularly underresearched area so as to stress the future challenges for large wood research. ©2016. American Geophysical Union
    corecore