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X - 2 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

Abstract. In order to shed light on the influence of riverbed vegetation3

on river morphodynamics, we perform a linear stability analysis on a min-4

imal model of vegetation dynamics coupled with classical one- and two-dimensional5

Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled6

as a density field of rigid, non-submerged cylinders and affects flow via a rough-7

ness change. Furthermore, vegetation is assumed to develop following a lo-8

gistic dependence and may be uprooted by flow. First, we perform the sta-9

bility analysis of the reduced one-dimensional framework. As a result of the10

competitive interaction between vegetation growth and removal through up-11

rooting, we find a domain in the parameter space where originally straight12

rivers are unstable towards periodic longitudinal patterns. For realistic val-13

ues of the sediment transport parameter, the dominant longitudinal wave-14

length is determined by the parameters of the vegetation model. Bed topog-15

raphy is found to adjust to the spatial pattern fixed by vegetation. Subse-16

quently, the stability analysis is repeated for the two-dimensional framework,17

where the system may evolve towards alternate or multiple bars. On a fixed18

bed, we find instability towards alternate bars due to flow-vegetation inter-19

action, but no multiple bars. Both alternate and multiple bars are present20

on a movable, vegetated bed. Finally, we find that the addition of vegeta-21

tion to a previously unvegetated riverbed favors instability towards alternate22

bars and thus the development of a single course rather than braiding.23
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1. Introduction

River planform morphologies, like meandering and braiding, are the result of the inter-24

action between flow and sediment transport (see for example Seminara [2010] and refer-25

ences therein, or for an illustration Figures 1A and B) as well as of riparian vegetation26

dynamics. In particular, it is recognized that riparian vegetation affects river morphology27

through modification of the flow field [Nepf , 2012], increased bank strength [Pollen and28

Simon, 2005] and changes in erosion/sedimentation processes in the riverbed/floodplain29

(see Gurnell et al. [2012] or Camporeale et al. [2013], for a review).30

Plant-flow interaction in rivers was favored by the emergence of plant roots in the Pale-31

ozoic and promoted new morphodynamic processes and morphological patterns. In turn,32

plant adaptation and feedback strengthening tremendously impacted landscape evolution33

(Davies and Gibling [2010] and Gibling and Davies [2012]). Today, the interaction dy-34

namics between riparian vegetation, flow and sediment is also thought to be crucial for35

instance in the formation of multiple bars and anabranching river patterns (see for exam-36

ple Jansen and Nanson [2010], or for an illustration Figures 1C and D).37

The influence of riparian vegetation on river morphology/planform patterns has tradition-38

ally been investigated either by means of numerical simulations or by experiments. Li and39

Millar [2011] and Nicholas et al. [2013] modeled riparian vegetation as a parameter influ-40

encing bank strength and Murray and Paola [2003] used a rule-based approach to model41

vegetation-induced bank strengthening. In addition, Crosato and Saleh [2011] included42

vegetation flow resistance in a morphodynamic model. Common among these works is43

the conclusion that the presence of riparian vegetation encourages meandering while un-44
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X - 4 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

vegetated rivers tend to braid. Furthermore, Perucca et al. [2007] modeled vegetation as45

a function of distance to the river as well as its impact on bank stability and they ob-46

served that meander form and wavelength change with respect to a non-vegetated river.47

More recently, Bertoldi et al. [2014] developed a numerical model including vegetation48

growth and uprooting dynamics to shed light on the effect of vegetation in the formation49

of alternate bars. Experimental works include Federici and Paola [2003] on alternate bar50

formation, Coulthard [2005] on sheltering that plants exert as passive porous obstacles,51

Tal and Paola [2007] on the active role of vegetation colonization in favoring transition52

from braided to single thread streams. Additionally, conceptual models have been used53

to analyze the dynamics of specific rivers (see Tooth and Nanson [2000] for the Marshall54

River and Gurnell and Petts [2006] for the Tagliamento River) and neural models [Crouzy55

et al., 2015] were used to obtain quantitative results.56

Theoretical approaches based on linear stability analysis have been shown to predict in-57

stability towards alternate or multiple bars on a movable riverbed (Callander [1969],58

Engelund and Skovgaard [1973], Parker [1976] and Colombini et al. [1987]). A common59

finding of these studies is that the key parameter in the formation of alternate bars or60

multiple bars is the river’s aspect ratio (halfwidth-to-depth ratio). Figure 2 shows a typi-61

cal result of such a stability analysis. Note the presence of a lower threshold for the aspect62

ratio separating stability from instability.63

However, due to the very complex nature of the dynamic interactions between riparian64

vegetation and sediment transport and flow, vegetation evolution was never taken into65

account explicitly in a linear stability analysis. While the omission of vegetation may66

be justified when looking at short timescales where riparian vegetation density does not67
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change much (and thus can be represented by a correction factor), this is not the case68

for river pattern formation that occurs over much longer timescales and where vegetation69

takes an active role in the process.70

Extending the results of Crouzy et al. [2015], which focused on anabranching patterns, we71

perform a systematic stability analysis of the model of Perona et al. [2014] modified to72

include local positive effects due to the presence of vegetation. We first propose a mini-73

mal model for riverbed vegetation dynamics including only logistic growth, local positive74

feedback and mortality by means of uprooting and then couple it with a standard two-75

dimensional framework for river morphodynamics (see Federici and Seminara [2003] for76

example) in Section 2. Linear stability analysis is performed in order to identify regions77

in the parameter space where instability towards periodic patterns exist (Section 3) and78

the results are discussed in Section 4.79

80
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X - 6 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

2. Modeling

2.1. Riverbed vegetation dynamics

We develop an analytical model for riverbed vegetation dynamics and discuss its validity81

for different conditions. Physical variables (Table 1) are written adopting a tilde (e.g. ṽ)82

in order to distinguish them from dimensionless ones. Riverbed vegetation is modeled83

as rigid, non-submerged cylinders with constant radius and we call φ̃(s̃, ñ, t̃) its density84

defined as number of plants per unit area of riverbed as a function of streamwise coordinate85

s̃, transverse coordinate ñ and time t̃. Then, we write the rate of change of vegetation86

density as87

∂φ̃

∂t̃
= α′gφ̃(φ̃m − φ̃) +D′∇2φ̃− α′dỸ ‖Ṽ‖2φ̃. (1)88

Here, in the right hand side the first term represents logistic growth with α′g the growth89

coefficient and φ̃m the carrying capacity (logistic growth for riparian vegetation was used90

in Camporeale and Ridolfi [2006] for example). The second term is a diffusion term with91

diffusion coefficient D′, which is a substantial novelty compared to the model of Perona92

et al. [2014]. This term indeed accounts for the fact that vegetation development is favored93

by existing neighboring vegetation (i.e. local positive feedback) by means of increased seed94

deposition and resprouting for example. According to D’Odorico et al. [2007] and Crouzy95

et al. [2015] such a local positive feedback can in general be represented by a diffusion96

term. Finally, the third term models negative feedback between flow and vegetation which97

results in vegetation removal by means of uprooting due to flow drag (Type I mechanism98

after Edmaier et al. [2011]). In this case, the rate of fluid mass that impacts on vegetation99

is proportional to the square of the stream velocity while the vegetation cross-section per100

cubic meter of river is proportional to water depth and vegetation density. While it would101
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Ṽ
(V

)
(a

)d
im

en
si

on
al

tr
an

sv
er

se
ve

lo
ci

ty

k
n

(k̃
n
)

(a
)d

im
en

si
on

al
tr

an
sv

er
se

w
av

en
u
m

b
er

φ̃
(φ

)
(a

)d
im

en
si

on
al

ve
ge

ta
ti

on
d
en

si
ty

α
g

(ν
g
)

(a
)d

im
en

si
on

al
ve

ge
ta

ti
on

gr
ow

th
co

effi
ci

en
t

D
(ν
D

)
(a

)d
im

en
si

on
al

ve
ge

ta
ti

on
d
iff

u
si

on
co

effi
ci

en
t

α
d

(ν
d
)

(a
)d

im
en

si
on

al
ve

ge
ta

ti
on

m
or

ta
li
ty

co
effi

ci
en

t

Ỹ
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X - 8 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

seem reasonable to add a threshold below which root resistance prevents uprooting, Perona102

et al. [2012] found that there are always a certain number of plants with very shallow root103

depth. Assuming a linear relationship between flow drag and biomass removal, this results104

in a vegetation mortality rate directly proportional to the square of the stream velocity105

vector Ṽ, to water depth Ỹ and to vegetation density through a coefficient α′d.106

Typically, large parts of a river’s cross-section are only flooded during a limited amount107

of time per year thus allowing vegetation to colonize these surfaces during non-flooded108

periods. In contrast, during a flooding period vegetation growth is negligible compared109

to uprooting. This means that the different processes of vegetation evolution do not110

necessarily happen at the same time and therefore equation (1) needs to be modified111

in order to still be applicable for vegetation dynamics in natural streams. In fact, the112

difficulty to separate these processes in one single equation is the main reason why many113

models do not account for vegetation dynamics.114

Assuming that the riverbed morphology and the vegetation cover do not change too much115

over a cycle flooding event - low flow interval, we can still use a description of the form116

of equation (1). This means that the vegetation cover is dense enough to not allow much117

more biomass to be produced and at the same time a large part of the vegetation is robust118

enough to outlive the flooding period. According to this assumption, the hydrograph119

may be divided into three periods: during the vegetation period t̃v vegetation grows and120

spreads, uprooting takes place during the flooding period t̃f and vegetation density is121

assumed to remain constant during the drought period t̃d. We then assume that this122

succession is happening repeatedly with constant t̃v, t̃d and t̃f . In this way, the time from123

the start of one flooding event to the next one may be interpreted as a cycle whose length124
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is given by t̃d + t̃v + t̃f (see Figure 3 for illustration). As shown by Crouzy et al. [2015],125

it is then possible to integrate the growth and diffusion processes into the flooding period126

and thus to recover the constant and continuous flow assumption to end up with127

∂φ̃

∂t̃
= αgφ̃(φ̃− φ̃m) +D∇2φ̃− αdỸ ‖Ṽ‖2φ̃, (2)128

where αg = α′g
t̃v

t̃d+t̃v+t̃f
, D = D′ t̃v

t̃d+t̃v+t̃f
and αd = α′d

t̃f
t̃d+t̃v+t̃f

. We can see that merging129

together the different mechanisms results in a relative increase or decrease of the growth130

and diffusion coefficients with respect to the uprooting coefficient depending on which131

timescale dominates. Note that usually these timescales are very different. In the case of132

the Marshall River (see Tooth and Nanson [2004]) and also for bar flooding in the Thur133

River (see for example Pasquale et al. [2010]) the flooding period is very small compared134

to the vegetation period and consequently, αd is decreased while αg and D are increased135

to yield a regime where mutual feedback is possible.136

137
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2.2. Coupling with river morphodynamics

In this section, we couple the vegetation model developed in Section 2.1 with a model138

for flow and sediment dynamics in a straight, rectangular channel with constant width,139

movable bed and non-erodible banks (see Blondeaux and Seminara [1985] for curved chan-140

nels). A scheme is depicted in Figure 4 showing the streamwise and transverse coordinates141

s̃ and ñ to which we associate the velocity vector Ṽ = {Ũ , Ṽ }. We introduce also uni-142

form (perturbed) bed elevation η̃0 (η̃) and water depth Ỹ0 (Ỹ ) respectively. Furthermore,143

we assume the river bed to consist of non-cohesive, alluvial material of constant grain144

size on which vegetation is able to grow and the river width to be considerably larger145

than flow depth in order to be able to use a depth-averaged formulation. We then can146

write momentum balance, continuity for flow and sediment and vegetation dynamics in147

its dimensionless form as148

∂U

∂t
= −U ∂U

∂s
− V ∂U

∂n
− 1

F 2
0

[
∂Y

∂s
− ∂η

∂s

]
− β τs

Y
(3)149

∂V

∂t
= −U ∂V

∂s
− V ∂V

∂n
− 1

F 2
0

[
∂Y

∂n
− ∂η

∂n

]
− β τn

Y
(4)150

∂Y

∂t
= −∇ · (YV) (5)151

∂η

∂t
= −γ∇ · (‖V‖3{cos δ, sin δ}) (6)152

∂φ

∂t
= νgφ(1− φ) + νD∇2φ− νdY ‖V‖2φ, (7)153

where the physical variables were made dimensionless using the uniform flow conditions154

{Ũ0, Ỹ0, η̃0, B̃0} with channel width 2B̃0. In order to recover physical quantities one needs155

to take {U, V } = Ũ−10 {Ũ , Ṽ }, {Y, η} = Ỹ −10 {Ỹ , η̃}, φ = φ̃−1m φ̃, {s, n} = B̃−10 {s̃, ñ} and156

t = Ũ0B̃
−1
0 t̃. Then, F0 = Ũ0√

gỸ0
with g the gravitational acceleration is the Froude number157

and β = B̃0

Ỹ0
is the aspect ratio at normal flow. We use the Chézy formula as closure relation158
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BÄRENBOLD ET AL.: ECOMORPHODYNAMICS X - 11

for the momentum equations with total shear stress as τ̃ = {τ̃s, τ̃n} = g
χ2‖Ṽ‖{Ũ , Ṽ }. The159

total friction coefficient χ is then modified to account for vegetation-induced friction160

(following Baptist et al. [2007]) to get161

χ =

√√√√ 1
1
χ2
b

+ cD d φ̃Ỹ
2g

, (8)162

with χb the bed friction coefficient which can be calculated by fixing the Strickler coefficient163

ks, cD the vegetation’s Stokes drag coefficient and d the vegetation diameter. We can164

rewrite total bed shear stress as165

τ̃ = {τ̃s, τ̃n} = (cb + cvY φ)‖Ṽ‖{Ũ , Ṽ }, (9)166

with cb = g
χ2
b

and cv = cDdφ̃mỸ0
2

.167

A second closure relation is needed for sediment continuity for which we assume bed load168

transport only and thus use a power law in the form of Φ̃ = a‖Ṽ‖3 with a an empirical169

parameter as was done by Camporeale and Ridolfi [2009]. Note that this relationship170

between sediment transport rate and stream velocity is an approximation to the Meyer-171

Peter/Müller formula used by Colombini et al. [1987] and Federici and Seminara [2003]172

where the threshold is removed.173

The sediment continuity equation furthermore contains the dimensionless parameter γ =174

3Q̃s0
(1−p)Ũ0Ỹ0

(with Q̃s0 the sediment transport rate under normal flow conditions and p the175

bed porosity) and the angle δ which measures deviation of sediment transport from the176

longitudinal direction. According to Federici and Seminara [2003], we may write177

cos(δ) =
U

‖V‖
(10)178

sin(δ) =
V

‖V‖
− r

β
√
τ?

∂η

∂n
. (11)179
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X - 12 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

where r is an empirical parameter between 0.5 and 0.6 (see Colombini et al. [1987] or180

Talmon et al. [1995]) and τ? = bŨ2
0U

2 is the dimensionless Shields stress (b = 1
χ2
bd50

ρs−ρw
ρw

,181

median grain diameter d50, sediment density ρs and water density ρw). The first term in182

the right hand side of equations (10) and (11) accounts for the effect of fluid shear stress183

on particle motion and the second term in equation (11) incorporates gravitational effects184

of a weak lateral slope (see Talmon et al. [1995]). Note that this approximation is only185

valid in the limit of weak transverse slopes where the effect of gravity is small compared186

to sediment entrainment by flow. Finally, the dimensionless coefficients of the vegetation187

equation are related to dimensional variables by the relations νg = αgφ̃mỸ0
Ũ0

, νD = D
Ỹ0Ũ0

and188

νd = αdỸ
2
0 Ũ0.189

2.3. Linear stability analysis

We perform a linear stability analysis [Turing , 1952] to assess the stability of the 2D-190

morphodynamic equations coupled with vegetation dynamics (henceforth named ecomor-191

phodynamic equations) around the homogeneous solution {U0, V0, Y0, η0, φ0}, namely a192

straight river with uniform vegetation density whose dynamics is governed by normal flow193

conditions. We can then write {U0, V0, Y0, η0, φ0} = {1, 0, 1,−J0s, φ0} with equilibrium194

streamwise slope under normal flow conditions J0 and equilibrium vegetation density φ0195

as196

J0 = βF 2
0 [cb + cvφ0] (12)197

φ0,1 =
νg − νd
νg

. (13)198

Note that there also exists a trivial solution φ0,2 = 0 for vegetation density which is in-199

herently unstable for positive φ0,1. Theoretically, φ0,1 may take negative values, but such200
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solutions are not physically valid since vegetation density can not be negative. In this201

case, the trivial solution φ0,2 = 0 becomes stable and is the only physical solution, mean-202

ing that vegetation dynamics is switched off and the model represents a river without203

riverbed vegetation. Therefore, in order to include vegetation dynamics, parameters have204

to be chosen in a way to assure a strictly positive solution for φ0,1. In the following, we will205

use the notation φ0 for φ0,1 assuming a strictly positive uniform solution. Additionally, φ0206

needs to be well above zero, meaning that the initial vegetation cover is well-developed,207

in order to not reach negative values once it is perturbed. Note that the same assump-208

tion of well-developed vegetation cover is needed for using a constant-flow description in209

the presence of a non-constant hydrograph (Section 2.1). We then write the perturbed210

homogeneous solution as211

{1, 0, 1,−J0s, φ0}+ ε{U1, V1, Y1, η1, φ1} (14)212

where for a perturbation with harmonic modes we have in the most general case213 
U1

V1
Y1
η1
φ1

 =


u(t) cos(knn+ ψu)
v(t) cos(knn+ ψv)
y(t) cos(knn+ ψy)
h(t) cos(knn+ ψh)
f(t) cos(knn+ ψf )

 exp(ikss) + c.c.. (15)214

Here, kn and ks are the wavenumbers of the harmonic modes in the transverse and stream-215

wise direction while ψi are the phases in the transverse direction for each variable. We216

can further specify the perturbation term by implementing the boundary conditions for217

impermeable lateral boundaries V (±1) = 0 which leads to kn = mπ
2

with m a positive218

integer. Note that it can easily be seen that the case where m = 0 corresponds to kn = 0219

which means that no lateral patterns occur and the model thus reduces to 1D. Figure 5220

shows bed elevation patterns for different values of m. While the transverse wavenumber221
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kn needs to take discrete values such that the physical transverse half-wavelength λ̃n
2

is222

a multiple of the actual river width 2B̃, no such constraint exists in the streamwise di-223

rection. However, note that in principle the longitudinal wavelength corresponding to ks224

should be large compared to the normal water depth in order to support the use of the225

shallow water approximation.226

Due to the impermeable lateral boundary, the phase ψv in equation (15) can only take227

the values of 0 and π
2

which leads us to distinguish the two cases228

V1 = v(t) sin(m
π

2
n) exp(ikss) (m odd) (16)229

V1 = v(t) cos(m
π

2
n) exp(ikss) (m even). (17)230

Finally, in order to have a perturbation Ansatz that is technically convenient, we need231

the perturbations of the other state variables to be π
2

out of phase with respect to the232

perturbation of the transverse velocity V1 (see for example Colombini et al. [1987]) and233

we get234

{U1, V1, Y1, η1, φ1} =
{
u(t), v(t) tan−1(m

π

2
n), y(t), h(t), f(t)

}
sin(m

π

2
n) exp(ikss) (18)235

{U1, V1, Y1, η1, φ1} =
{
u(t), v(t) tan(m

π

2
n), y(t), h(t), f(t)

}
cos(m

π

2
n) exp(ikss) (19)236

for m odd and even respectively. By this mean, we transform our ecomorphodynamic237

equation system into an eigenvalue problem with the real parts of the eigenvalues deter-238

mining the asymptotic fate of the system. Substituting (14), (18) and (19) into equations239

(3) to (7) we end up with the following linear system of equations:240 
du
dt
dv
dt
dy
dt
dh
dt
df
dt

 = A


u
v
y
h
f

 , (20)241
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where A is the following 5 x 5 matrix:242 
−iks − 2βcb − 2βcvφ0 0 −iks

F 2
0

+ βcb
−iks
F 2
0

−βcv
0 −iks − βcb − βcvφ0

−kn(−1)m+1

F 2
0

−kn(−1)m+1

F 2
0

0

−iks kn(−1)m+1 −iks 0 0
−iγks 1

3
γkn(−1)m+1 0 − γr

3β
√
bŨ2

0

k2n 0

−2βνdφ0 0 −βνdφ0 0 −βνgφ0 − νDs
β
k2s +

νDn
β
k2n

 .

(21)243

Equation (20) defines a system of ordinary, homogeneous differential equations with con-244

stant coefficients which describes the initial, linear temporal evolution of the perturbed245

system. In order to assess stability in the limit of long time t in the linear regime, the real246

parts of the eigenvalues ωi of matrix A may be analyzed [Camporeale and Ridolfi , 2009].247

We can say that the system is stable with respect to a perturbation with longitudinal248

wavenumber ks and bar order m if Maxi(Re(ωi(ks,m))) < 0, meaning that all perturba-249

tions decay in time. Conversely, the system is unstable if for any given perturbation we250

have Maxi(Re(ω(ks,m))) > 0. More importantly, the system is unstable towards periodic251

spatial patterns in the linear regime if the highest growth rate Maxi(Re(ωi(ks,m))) occurs252

at finite streamwise wavenumber ks with all parameters fixed. In this case, for fixed ks,253

perturbation growth rate as a function of bar order m determines whether the system254

evolves towards alternate (m = 1) or multiple bars (m > 1).255

256
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3. Results

3.1. 1-dimensional analysis

We start our analysis with the case of a relatively narrow river where we can safely use257

a 1D model. The unstable waves that can develop in such rivers are referred to as long258

waves (see also the analysis of Lanzoni et al. [2006]). In principle, the 1D equations can be259

obtained as a special case from equation (20) by setting m = 0. However, the conventions260

found in the literature differ when considering 1D ([Lanzoni et al., 2006]) or 2D setups261

[Federici and Seminara, 2003] due to different choices of dimensionless quantities. In order262

to be able to compare our results to the existing literature, we therefore need to rewrite263

the model in the following one-dimensional form:264

∂U

∂t
= −U ∂U

∂s
− 1

F 2
0

[
∂Y

∂s
+
∂η

∂s

]
− cb

U2

Y
− cvφU2 (22)265

∂Y

∂t
= −Y ∂U

∂s
− U ∂Y

∂s
(23)266

∂η

∂t
= −γU2∂U

∂s
(24)267

∂φ

∂t
= νgφ(1− φ) + νD

∂2φ

∂s2
− νdφY U2, (25)268

where F0 = Ũ0√
gỸ0

, cb = g
χ2
b
, cv = cDdφ̃mỸ0

2
, γ = 3Q̃s0

(1−p)Ũ0Ỹ0
, νg = αgφ̃mỸ0

Ũ0
, νD = D

Ỹ0Ũ0
and269

νd = αdỸ
2
0 Ũ0. Note that the streamwise coordinate and time are normalized as s = Ỹ −1s̃270

and t = Ũ0Ỹ
−1t̃, while U = Ũ−10 Ũ , {Y, η} = Ỹ −10 {Ỹ , η̃} and φ = φ̃−1m φ̃ remain unchanged271

with respect to the 2D model.272

It is well known [Lanzoni et al., 2006] that in the linear regime of the morphodynamic273

equations no instability can be detected at finite wavenumber. Instability at the linear274

regime can only be found for a fixed bed and F0 > 2 but then the selected wavenumber is275

ks = ∞ (roll waves, see Lanzoni et al. [2006]). This means that the system of equations276

(22), (23) and (24) with φ̃m alone can not produce instability towards periodic patterns at277
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the linear level. Note that in the long term nonlinear effect could still trigger instabilities278

that lead to patterns.279

We will now see what happens if we first combine vegetation dynamics with flow dynamics280

while assuming fixed bed conditions (equations (22), (23) and (25), putting equal to zero281

the sediment parameter γ). While vegetation growing on a fixed bed may seem unrealistic282

it provides a useful insight into the fundamental effects of flow-vegetation interaction.283

In Figure 6A, B and C, different vegetation coefficients are varied and plotted along with284

Froude number F0 at fixed water depth. It is clearly visible on all three figures that285

the dynamic interaction between flow and vegetation causes instability towards periodic286

patterns in certain regions of the parameter space. Furthermore, the domain proves to be287

simply connected, meaning that it does not possess any holes. Note that in Figures 6A and288

B the domain extends down to the origin. Additionally, the pattern wavenumber increases289

with increasing Froude number, carrying capacity and growth rate. Those findings remain290

valid if sediment dynamics is added to the equation system by allowing γ > 0: we can see291

in figure 6D that γ only becomes relevant at values greater than 10−1. But, due to the fact292

that γ represents the ratio of the sediment timescale to the hydrodynamic timescale its293

actual value is generally much lower (γ ∼ O(10−3 − 10−4), see Parker [1976] for realistic294

estimates).295

3.2. 2-dimensional analysis

Having seen in the previous section that our simple vegetation model indeed can lead296

to periodic patterns, we now focus on the 2D model which is more relevant for natural297

rivers. In view of readability, we will use the abbreviations SV for Saint-Venant, SVE298

for Saint-Venant-Exner, SVV for Saint-Venant-Vegetation and SVEV for Saint-Venant-299
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Exner-Vegetation (see also Table 1).300

As shown by Colombini et al. [1987], flow-sediment instability can be found above a cer-301

tain threshold for the aspect ratio β (Figure 2) if an appropriate model for transverse302

slope effects on sediment transport is chosen (equation (11)). In Figure 7A, we reproduce303

the classical result from Colombini et al. [1987] using our 2D model without the vegetation304

equation. The color code indicates the maximum growth rate and the black line shows305

the selected longitudinal wavenumber ks for a certain aspect ratio β. Then, in Figure 8A306

we can see pattern domains of alternate and multiple bars in the F0 vs. β space based307

on comparing the growth rates for different values of the bar order m. Note that higher308

aspect ratio and Froude number correspond to higher bar order m of the most unstable309

perturbation. Additionally, a sharp cut-off is visible at about F0 = 2, meaning that no310

instability towards finite patterns occurs if F0 > 2 independent of the aspect ratio. This311

is because above the critical value F0 = 2 modes with unbounded wavenumber experience312

a higher growth rate than patterns with finite wavenumber (analogous to the roll waves313

in the 1D model).314

While the graphs in Figures 7A and 8A represent a river with movable bed but devoid of315

vegetation, 7B and 8B are their equivalents for a vegetated river with fixed bed (i.e. no316

erosion). The qualitative similarity between Figures 7A and B is striking (note however317

the difference in the value of the Froude number): the pattern domain is ”U-shaped” and318

there is an aspect ratio threshold for observing patterns. This means that for certain319

parameter values the vegetation equation (coupled with flow) produces instability at a320

finite wavelength, which is confirmed by Figure 8B where we can see the characteristic321

shape of the vegetation-flow instability domain in the Froude number versus aspect ratio322
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space. We observe a left and a right boundary with a sharp cut-off to the right along323

with a minimum value for the aspect ratio. In contrast to Figure 8A, the cut-off is due324

to the fact that a river’s uprooting capacity is proportional to the Froude number and325

thus the stable equilibrium solution of vegetation density φ0 becomes zero above a certain326

Froude number (to the right of the black line of Figure 8B). Note that strictly speaking327

our assumption of well-developed vegetation cover (φ0 well above zero) is not fullfilled328

anymore close to the limiting Froude number where φ0 tends to zero.329

Interestingly though, only alternate bar patterns are produced by vegetation growing330

on a fixed bed (Figure 8B). This means that the growth rate of alternate bars always331

exceeds that of multiple bars (of any order), a fact which holds independently of the332

Froude number or aspect ratio. This result is related to the fact that when assuming333

a reasonable value for vegetation density its induced roughness always exceeds sediment334

induced roughness by at least an order of magnitude.335

After discussing vegetation- and sediment-related patterns alone, we tackle now the com-336

plete problem with a full coupling between sediment and vegetation dynamics. Thus, in337

the following we are showing the results of the complete model developed in Section 2.2338

which describes 2-dimensional flow on a movable, vegetated river bed. Figure 9 shows339

comparisons of SVV and SVEV (alternate bar formation only) in the F0 vs. vegetation340

carrying capacity φ̃m and F0 vs. β space respectively. Figure 9A indicates that the same341

competitive interaction between vegetation growth and death is taking place as was seen342

for the 1D model. It then turns out that the inclusion of sediment dynamics does (for a343

realistic range of values for γ, see Section 3.1) not deform an existing instability domain344

but rather add to it. We can therefore conclude on the influence of sediment dynam-345
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ics by simply looking at what is added in the graphs below with respect to the graphs346

above in Figure 9. As expected, to the right of the black line where no vegetation occurs347

we retrieve the instability domain induced by sediment dynamics alone with a cut-off at348

F0 = 2. Additionally, we can see another instability domain at lower Froude number349

in Figure 9C which seems to be the result of the interplay of sediment and vegetation350

dynamics. While vegetation adds instability domains we can also see that part of the351

pattern domain previously present in the SVE-model (Figure 8A) disappeared. Further-352

more, Figure 9D indicates that, different to the domains resulting from the 1D analysis,353

the pattern domain is no more simply connected. In fact, the domain is divided in two354

parts in the F0 vs. β space with part of the sediment-induced instability detached from355

the main domain. Incidentally, this is also visible in Figure 9C for the horizontal line356

φ̃m = 10.357

The dominating longitudinal wavenumber ks depends heavily on the model parameters and358

can also vary drastically in the same graph. For example in Figure 9D, lower wavenumbers359

(and thus higher wavelengths) occur on the higher-Froude number half of the vegetation360

domain and on the part of the sediment domain that is attached to the vegetation domain361

while higher wavenumbers can be seen on the lower-Froude number half of the vegetation362

domain and for small Froude numbers.363

Figure 10 shows from another viewpoint which part of the instability domain is caused by364

sediment dynamics and vegetation dynamics respectively. In fact, the two graphs are ver-365

tical profiles of Figure 9D, the upper one for F0 = 0.65 showing contribution of sediment366

dynamics (note the similarity to Figure 7A) while the lower one for F0 = 0.75 contains the367

influence of both sediment (aspect ratio below 30) and vegetation (aspect ratio above 30,368
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see also 7B. We can thus observe that the left part of the instability domain (with lower369

longitudinal wavenumbers) to the right in Figure 9D is caused by sediment dynamics.370

In contrast, the dark blue part (having higher longitudinal wavenumbers) of the same371

instability domain is clearly due to vegetation dynamics, as it can be seen in Figure 10B.372

As we already saw the pattern domains for formation of alternate bars in the model373

including sediment and vegetation dynamics, we finally want to turn our attention to374

the formation of multiple bars. For this aim, we again compare the results of the model375

without sediment dynamics (SVV) to the full model (SVEV). Essentially, Figure 11 cor-376

responds to the right side of Figure 9 but with a color code indicating bar order instead377

of selected longitudinal wavenumber. Again, we can observe how the pattern domains378

of sediment dynamics (Figure 7B) and vegetation are merged to yield a different kind379

of domain. Note the abrupt change from multiple bar formation with increasing aspect380

ratio to only alternate bar formation in the vegetation-induced domain to multiple bar381

formation again (left to right). While only part of the sediment-induced instability to-382

wards multiple bars is preserved (but interrupted in the middle), the vegetation-induced383

part is completely preserved and still leads to alternate bars exclusively. It can be seen384

in Figure 12 (A and B are both normalized with respect to the highest growth rate in385

A) that the vegetation-induced instability domain of alternate bars (m=1) contains the386

domain of multiple bars (m=4) and that its growth rate is always higher. This is true for387

multiple bars of any order.388

389
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4. Discussion

We showed that by using stability analysis of our ecomorphodynamic framework we in-390

deed can detect instability towards periodic patterns with finite wavelength. The essential391

ingredient for such instability to occur in the 1D model is competitive interaction between392

vegetation growth and mortality caused by flow drag. In this context, competitive inter-393

action means that there is at least one mechanism (i.e., biomass growth in our case) that394

increases vegetation density φ and another one (i.e., uprooting by flow drag in our mode)395

that counteracts it (D’Odorico et al. [2007] and Crouzy et al. [2015]). This competitive396

interaction creates opportunities for the presence of patterns meaning that vegetation is397

neither present everywhere nor completely missing. In our model uprooting depends on398

water depth and velocity. Hence, the balance between such state variables is dynamic,399

thus favoring growth of vegetation in some cases and death in others. Eventually, this may400

result in vegetation patterns that are either in phase or out-of-phase with hydrodynamic401

variables.402

While it is well known that the 1D morphodynamic framework without vegetation (SVE)403

does not exhibit instability towards regular patterns, it was unknown how sediment dy-404

namics can influence vegetation induced river patterns. We found that in the presence of405

significant vegetation density sediment dynamics does not contribute actively to pattern406

formation, due to vegetation induced roughness dominating sediment induced roughness.407

Instead bed topography adapts in a passive manner to vegetation induced patterns. It is408

interesting that this was found to be true independent of the values assigned to the veg-409

etation coefficients. After fixing the less fundamental parameters (Table 3), we identified410

four parameters (three describing vegetation and one describing flow) mostly relevant for411

D R A F T December 29, 2015, 10:40am D R A F T
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such competitive interaction: the growth rate αg and the carrying capacity φ̃m promote412

growth while the mortality rate αd and the Froude number F0 (at constant water depth)413

lead to a higher mortality through uprooting.414

In contrast to the 1D SVE morphodynamic framework, its extension to two dimensions415

was shown to allow for regular patterns once a certain threshold for the aspect ratio416

is exceeded (Colombini et al. [1987] and Federici and Seminara [2003]). Moreover, this417

threshold seemed to match reasonably well the available empirical data [Colombini et al.,418

1987]. An important ingredient of the morphodynamic models of Colombini et al. [1987]419

and Federici and Seminara [2003] is a semi-empirical relationship for lateral slope effects420

in rivers (see Talmon et al. [1995] for the derivation). This relationship expresses the fact421

that sediment transport is not following bottom shear stress exactly in the presence of a422

laterally sloped bed, but is slightly deviated due to gravitaional forces along the lateral423

slope. Although the previous works did not insist on this, the correction for sediment424

transport seems to be an essential element for reproducing the well-known threshold of425

the aspect ratio below which no instability towards patterns occurs.426

In this work, we extended the well-known 2D SVE morphodynamic framework to account427

for riverbed vegetation and we found the same competitive interaction between vegetation428

growth and death as in the 1D model to be responsible for instability towards patterns429

on a fixed river bed with vegetation. Vegetation density increases local roughness and430

locally slows the stream velocity with consequent increase of water depth. In our model,431

this mechanisms favors sediment deposition and bed aggradation, and has thus an in-432

direct effect on vegetation growth. Although in reality these morphogenic mechanisms433

are conjectured to drive vegetation growth, we found that the emergence of vegetated434
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patterns can be either in phase or not with hydromorphodynamic variables depending435

on how the latter combine to determine uprooting. Remarkably, this vegetation-induced436

pattern domain also exhibits a lower threshold for the aspect ratio but the domain gener-437

ally occurs at higher longitudinal wavenumber ks than sediment-induced domains. It thus438

seems that both kinds of patterns, vegetation-induced and sediment-induced ones, need439

a certain minimum lateral length-scale in order to develop and are not freely scalable.440

The analysis of the complete 2D framework showed that although the instability towards441

multiple bars needs a movable bed to be triggered, the vegetation parameters still affect442

the Froude number at which this instability occurs. Thus, even if it is neither a necessary443

nor a sufficient condition for pattern formation, riverbed vegetation has to be taken into444

account in order to know under which conditions such patterns prevail and to determine445

the dominant longitudinal wavelength.446

447

Comparing our work to numerical models for the effect of vegetation on river patterns448

(e.g. Murray and Paola [2003] and Crosato and Saleh [2011]), we can see an interesting449

agreement to our results. In fact, these studies suggest that a river will typically develop450

a braiding pattern in an unvegetated floodplain while the tendency to meander increases451

with increasing vegetation density. Similarly, using our analytical framework we found452

multiple bars (braiding) to prevail on unvegetated floodplains. Conversely, the addition453

of vegetation dynamics clearly produced a region in the parameter domain where only454

instability towards alternate bars exists, which can be considered the first step in the455

development of meanders [Ikeda et al., 1981]. The coincidence of these results is particu-456

larly interesting considering the fact that Murray and Paola [2003] and Crosato and Saleh457
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[2011] include riverbed vegetation by means of increased bank strength while in this work458

we focus on vegetation-induced roughness change.459

Our modeling approach, including a minimal model for vegetation dynamics, allows the460

use of a systematic stability analysis to detect parameter domains with periodic river461

patterns. However, it leads to the omission of a number of potentially important pro-462

cesses. Some of them could be readily added to the present model in a next step. For463

instance, flow diversion caused by riverbed vegetation could be taken into account by464

adding an appropriate term in the flow-continuity equation (equation (5)). It was not465

taken into account in this analysis since vegetation volume is negligibly small compared466

to water volume in our model setup. In fact, the volume percentage occupied by vegeta-467

tion is around 0.1 percent while vegetation induced roughness is ten times larger than bed468

roughness for typical parameters. Furthermore, we could extend our work to submerged469

or flexible vegetation (as opposed to the non-submerged, rigid vegetation we assumed in470

this analysis). For completely submerged vegetation the surface impacted by flow drag471

would be reduced by a factor of h̃v
Ỹ

(with h̃v the vegetation height) in the third term on472

the right hand side of equation (7). Meanwhile, non-rigid vegetation would require the473

exponent of Ũ to be somewhere between 1 and 2 in the same term.474

None of the above-mentioned processes however is expected to significantly alter the gen-475

eral results of this work as long as a flow regime allowing a competition between growth476

and death is observed. However, the shape of the instability domains in the parameter477

space could be modified. In contrast, the vegetation cover would either colonize the whole478

riverbed if the floods were too low or too short or get completely destroyed if the floods479

were too strong or too long and thus vegetation-induced patterns would not exist any-480
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more.481

Perhaps the two major effects related to riverbed vegetation that were not considered in482

this analysis are related to roots. Firstly, the presence of roots is known to increase bed483

stability [Pasquale and Perona, 2014]. Secondly, the erosion of sediment around a plant484

can expose the root system which makes the plant more susceptible to uprooting due485

to reduced root anchoring (Type II mechanism in Edmaier et al. [2011]). Additionally,486

uprooting is not an instantaneous process anymore but a more gradual one where several487

floodings can contribute to root exposure until uprooting finally takes place [Edmaier488

et al., 2015]. The inclusion of the first of the two aforementioned effects would require the489

introduction of an additional term on the right hand side of equation (6). This term would490

include a threshold related to root strength and sediment transport would only start once491

this threshold is exceeded. Integrating the second effect would require the proportionality492

constant νd in equation (7) to be a function of plant rooting depth and bed elevation in493

order to determine the amount of roots exposed at a given time. As opposed to the mod-494

ifications mentioned earlier, the latter two are fundamentally different processes which495

could potentially alter the pattern forming dynamics. Nevertheless, they introduce sig-496

nificant technical complications and are thus not well suited for an analytically tractable497

model. Another possibility consists of modeling vegetation mortality as a function of bed498

elevation change (∂η
∂t

. Positive values of ∂η
∂t

would mean vegetation burying while negative499

values represent roots exposure, both eventually leading to the death of vegetation.500

While further terms can readily be added to our ecomorphodynamic equations without im-501

plying essential conceptual or technical changes, the assumption of a uniformly-vegetated502

state perturbed by flooding events appears to be an intrinsic limitation of our frame-503
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work. Linear perturbation analysis performed over a state with regions without vegetation504

would indeed directly lead to non-physical solutions with negative vegetation density. This505

threshold at zero density introduces in turn a non-linearity probably precluding an ana-506

lytical treatment. In this regard, numerical simulations of our ecomorphodynamic model507

could shed light on whether the non-linearity yields fundamentally different results. In508

rivers, our model is thus fully appropriate to describe regions subject to intermittent flow,509

as riverbars where a homogenous cover of pioneer vegetation may develop before the onset510

of flooding events, or the inner of meander bends where vegetated stripes are observed511

(so-called scroll bars). The importance of flow intermittency lead us to the generaliza-512

tion of the ecomorphodynamic model integrating flooding and drought periods. Leaving513

classical rivers, tidal marshes could offer an example of vegetation growing while subject514

to action of the flow. Note that in order to apply our framework to this case one should515

consider flexible vegetation instead of rigid vegetation.516

In this work, we analyzed the behavior of our ecomorphodynamic model in the asymptotic517

limit in the linear regime and thus all conclusions are restricted to this limit, meaning518

that nonlinear effects need to be weak. If the operator A in equation possesses N distinct519

eigenvalues (where N is the rank of A) as it is in the present problem we can write the520

general solution of (20) as521

N∑
i=1

ci exp(ωit)vi, (26)522

where ωi are the complex eigenvalues of A, vi are the respective eigenvectors and ci are523

coefficients. If A were a normal operator (meaning that AA∗ = A∗A), we could find an524

orthogonal basis of eigenvectors vi. In the limit of large t then, the system would be525

dominated by the exponential with the largest temporal growth rate (maximum of the526
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real parts of ωi) and thus the solution would decay to zero for a negative maximum growth527

rate and grow for a positive maximum growth rate. Note that this is only true in the528

linear regime and that nonlinear effects could come into play at some point.529

However, in the context of river morphology, A is not a normal operator and therefore530

its eigenvectors do not form an orthogonal basis. That is, although the system may be531

asymptotically stable, transient growth can still occur [Camporeale and Ridolfi , 2009] at532

finite timescales. Therefore, further research needs to be done if the timescale of interest533

is finite [Camporeale and Ridolfi , 2009]. But, asymptotically the exponential with the534

largest real part of the eigenvalues is still going to dominate and thus describes the be-535

havior of the system as t becomes large. This is why we can still safely state that the536

initially small perturbations will be amplified in the long-term linear regime if the real537

part of any ωi is positive. And if the largest growth rate occurs for a finite longitudinal538

wavenumber ks (all parameters fixed), this mode will be amplified more strongly than all539

other modes contained in a packet of random perturbation waves and thus will dominate540

after some time due to the exponential character of perturbation growth.541

Finally, since our model is designed to include only the main effects of riverbed vegetation542

on river morphology, one could think of using field data to evaluate the accuracy of these543

design choices in a realistic scenario (e.g., see Figure 1). However, although ecomorpho-544

dynamics is a field which has rapidly been expanding over the last few years, we were545

not able to find out a field dataset allowing a comprehensive validation of the results of546

our stability analysis (or equivalently also allowing to falsify our theory). Regarding field547

studies, one can cite the difficulty of identifying a typical dominant flow essential for a548

quantitative comparison with the theory. Flume experiments allow a better control of549
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the flow and sediment conditions, however, identifying the perfect lab model for riparian550

vegetation is still challenging (?). It is interesting to note that we have used our ecomor-551

phodynamic model to interpret the results of a flume experiment in a convergent channel552

(1D setup, Perona et al. [2014]). Obtaining comprehensive results on the 2D setup would553

be challenging but could constitute a very interesting continuation of our study. We hope554

that our results could help motivating and designing such experiments.555

556
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5. Conclusion

In this work, we developed an analytical model for riverbed vegetation dynamics and557

coupled it to the classic two-dimensional Saint Venant-Exner framework to obtain a set558

of ecomorphodynamic equations. Subsequently, we performed a linear stability analysis559

of the ecomorphodynamic equations and assessed its capability to produce periodic river560

patterns.561

We found that competitive interaction between vegetation growth and mortality indeed562

may lead to instability towards longitudinal waves in a one-dimensional framework with563

bed elevation following the vegetation pattern. In the two-dimensional framework, alter-564

nate bars develop on a fixed bed while both alternate and multiple bars can be found on a565

movable bed. While it is known [Engelund and Skovgaard , 1973] that stability analysis of566

large, unvegetated rivers predicts instability towards multiple bars which can be seen as a567

possible precursor of braiding, the addition of vegetation dynamics in our model tends to568

favor meandering instead. Remarkably, this is compatible with the findings of numerical569

simulations which include the bank-strengthening effect of riparian vegetation, although570

in our work vegetation acts on roughness instead of bank strength.571
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Figure 1. Examples of river bed patterns emerging in different environments: A) regular

series of unvegetated alternate bars on the Rhine River (Haag, Switzerland; B) braided

river in absence of vegetation (Waimakariri River, New Zealand); C) moderately vege-

tated multiple bars (Awash River, Ethiopia); D) anabranching patterns in the form of

completely vegetated multiple bars (Awash River, Ethiopia). Map data: Google, Digital-

globe.
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Figure 2. Neutral curve for alternate bar formation (instability towards alternate bars

above the line, no instability below) in the ks vs. β space.
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Figure 3. Idealized river hydrograph with non-constant flow: the blue curve represents

water discharge (Q̃); the red curve represents vegetation density (φ̃). φ̃i the vegetation

density after cycle i and ∆φ̃i the change of vegetation density during cycle i. Flooding

timescale tf , vegetation timescale tv and drought timescale td are indicated in black.
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Ỹ (s̃, ñ, t̃)
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Figure 4. Uniform water height Ỹ0 and bed profile η̃0(s̃) in black and perturbed water

height Y0(s̃, ñ, t̃) and bed profile η̃(s̃, ñ, t̃) in red.
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Figure 5. Top view of bed elevation for alternate (m = 1) and multiple bars (m > 1),

blue indicates lower elevation.
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Table 2. Fixed parameters of the 1D analysis

Parameter name Variable Value Units

Normal water depth Ỹ0 1 m

Stokes drag coefficient cD 1.5 -

Vegetation diameter d 0.01 m

Strickler coefficient kst 33.33 m1/3s−1

Vegetation diffusion coefficient D 0 m2s−1
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Figure 6. 1D instability domains of SVV and SVEV: white means no instability towards

patterns and the color code indicates the most unstable longitudinal wavenumber. Fixed

parameter values are indicated in Table 2. A) Froude number (h0 fixed) vs. vegetation

carrying capacity (αg = 1 m2s−1, αd = 1 m−3s, D = 0 m2s−1 and γ = 10−3), B) Froude

number (h0 fixed) vs. vegetation growth coefficient (φ̃m = 50 m−2, αd = 1 m−3s, D =

0 m2s−1 and γ = 10−3), C) Froude number (h0 fixed) vs. vegetation uprooting coefficient

(φ̃m = 50 m−2, αg = 1 m2s−1, D = 0 m2s−1 and γ = 10−3), D) Froude number (h0 fixed)

vs. sediment parameter (φ̃m = 50 m−2, αg = 1 m2s−1, αd = 1 m−3s and D = 0 m2s−1).
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Table 3. Fixed parameters of the 2D analysis

Parameter name Variable Value Units

Normal water depth Ỹ0 1 m

Stokes drag coefficient cD 1.5 -

Vegetation diameter d 0.01 m

Strickler coefficient kst 33.33 m1/3s−1

Median sediment diameter d50 0.005 m

Transverse slope parameter r 0.5 -

Vegetation growth coefficient αg 1 m2s−1

Vegetation uprooting coefficient αd 1 m−3s

Vegetation diffusion coefficient D 100 m2s−1
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Figure 7. 2D instability domains of SVE and SVV: white means no instability towards

patterns, the color code indicates the maximum exponential growth coefficient (normalized

to the maximum value occurring in each figure) and the black line marks the selected

longitudinal wavenumber for each aspect ratio. Fixed parameter values are indicated in

Table 3. A) Longitudinal wavenumber vs. aspect ratio for alternate bars on a movable bed

without vegetation (F0 = 0.5 and m = 1), B) Longitudinal wavenumber vs. aspect ratio

for alternate bars on a fixed bed with vegetation (F0 = 1.5, φ̃m = 50 m−2 and m = 1).
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Figure 8. 2D instability domains of SVE and SVV: white means no instability towards

patterns and the color code indicates bar order m. Light blue is for m = 1 (alternate bars)

and darker blues are for m = 2, 3, 4 (multiple bars). No vegetation survives to the right

of the black line. Fixed parameter values are indicated in Table 3. A) Froude number (h0

fixed) vs. aspect ratio for movable bed without vegetation, B) Froude number (h0 fixed)

vs. aspect ratio for a fixed bed with vegetation (φ̃m = 50 m−2).
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X - 44 BÄRENBOLD ET AL.: ECOMORPHODYNAMICS

C
a
rr

y
in

g
 c

a
p
a
c
it
y

~ ϕ
m

[m
-2

]

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

A
s
p
e
c
t 
ra

ti
o
β

[-
]

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

Froude Number F
0

[-]

0.5 1 1.5 2 2.5 3

A
s
p
e
c
t 
ra

ti
o
β

[-
]

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

Froude number F
0

[-]

0.5 1 1.5 2 2.5 3

C
a
rr

y
in

g
 c

a
p
a
c
it
y

~ ϕ
m

[m
-2

]

5

10

15

20

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

A)

C)

B)

D)

2D-SVV

2D-SVEV

2D-SVV

2D-SVEV

no vegetation
no vegetation

no vegetation
no vegetation

Figure 9. 2D instability domains of SVV and SVEV: white means no instability towards

patterns and the color code indicates the most unstable longitudinal wavenumber. No

vegetation survives to the right of the black line. Fixed parameter values are indicated

in Table 3. A) Froude number (h0 fixed) vs. vegetation carrying capacity on a fixed bed

with vegetation (β = 50 and m = 1), B) Froude number (h0 fixed) vs. aspect ratio on

a fixed bed with vegetation (φ̃m = 10 m−2 and m = 1), C) Froude number (h0 fixed) vs.

vegetation carrying capacity on a movable bed with vegetation (β = 50 and m = 1), D)

Froude number (h0 fixed) vs. aspect ratio on a movable bed with vegetation (φ̃m = 10 m−2

and m = 1).
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Figure 10. 2D instability domains of SVEV: white means no instability towards pat-

terns, the color code indicates the maximum exponential growth coefficient (normalized to

the maximum value occurring in each figure) and the black line marks the selected longi-

tudinal wavenumber for each aspect ratio. Fixed parameters are indicated in Table 3. A)

Longitudinal wavenumber vs. aspect ratio for alternate bar formation on a movable bed

with vegetation (φ̃m = 10 m−2, F0 = 0.65 and m = 1), B) Longitudinal wavenumber vs.

aspect ratio for multiple bar formation on a movable bed with vegetation (φ̃m = 10 m−2,

F0 = 0.75 and m = 1).
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Figure 11. 2D instability domains of SVV and SVEV: white means no instability

towards patterns and the color code indicates bar order m. Light blue is for m = 1

(alternate bars) and darker blues are for m = 2, 3, 4 (multiple bars). No vegetation

survives to the right of the black line. Fixed parameter values are indicated in Table 3. A)

Froude number (h0 fixed) vs. aspect ratio for fixed bed with vegetation (φ̃m = 10 m−2), B)

Froude number (h0 fixed) vs. aspect ratio for movable bed with vegetation (φ̃m = 10 m−2).
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Figure 12. 2D instability domains of SVEV: white means no instability towards pat-

terns, the color code indicates the maximum exponential growth coefficient (normalized

to the maximum value occurring in both figures) and the black line marks the selected

longitudinal wavenumber for each aspect ratio. Fixed parameters are indicated in Table

3. A) Longitudinal wavenumber vs. aspect ratio for alternate bar formation on a movable

bed with vegetation (φ̃m = 50 m−2, F0 = 1.5 and m = 1), B) Longitudinal wavenumber vs.

aspect ratio for alternate bar formation on a movable bed with vegetation (φ̃m = 50 m−2,

F0 = 1.5 and m = 4).

D R A F T December 29, 2015, 10:40am D R A F T


