19 research outputs found

    In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear whether <it>in situ </it>carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved in the synthesis of aromatase, has been suggested as a surrogate marker for aromatase expression.</p> <p>Methods</p> <p>Primary tumor material was retrospectively collected from 88 patients who participated in a randomized clinical trial comparing the AI letrozole to the anti-estrogen tamoxifen for first-line treatment of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate Wilcoxon analysis and the Cox-analysis were performed to evaluate time to progression (TTP) in relation to marker expression.</p> <p>Results</p> <p>Aromatase expression was associated with ER, but not with PR or COX-2 expression in carcinoma cells. Measurements of aromatase in WS were not comparable to results from TMAs. Expression of COX-2 and aromatase did not predict response to endocrine therapy. Aromatase in combination with high PR expression may select letrozole treated patients with a longer TTP.</p> <p>Conclusion</p> <p>TMAs are not suitable for IHC analysis of <it>in situ </it>aromatase expression and we did not find COX-2 expression in carcinoma cells to be a surrogate marker for aromatase. <it>In situ </it>aromatase expression in tumor cells is associated with ER expression and may thus point towards good prognosis. Aromatase expression in cancer cells is not predictive of response to endocrine therapy, indicating that <it>in situ </it>estrogen synthesis may not be the major source of intratumoral estrogen. However, aromatase expression in combination with high PR expression may select letrozole treated patients with longer TTP.</p> <p>Trial registration</p> <p>Sub-study of trial P025 for advanced breast cancer.</p

    Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells

    Get PDF
    The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower COUP-TFII expression in tamoxifen/endocrine-resistant versus sensitive breast cancer cell lines. The identification of COUP-TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin. Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2 promoter was increased by all-trans retinoic acid (atRA). RARβ2 regulated gene RRIG1 was increased by atRA and COUP-TFII transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERα, SRC-1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor RARB2 by COUP-TFII

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform

    Get PDF
    Contains fulltext : 125929.pdf (publisher's version ) (Open Access)Mass spectrometry (MS)-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role in iron metabolism. Here we describe the design, validation and use of a novel stable hepcidin-25(+40) isotope as internal standard for quantification. Importantly, the relative large mass shift of 40 Da makes this isotope also suitable for easy-to-use medium resolution linear time-of-flight (TOF) platforms. As expected, implementation of hepcidin-25(+40) as internal standard in our weak cation exchange (WCX) TOF MS method yielded very low inter/intra run coefficients of variation. Surprisingly, however, in samples from kidney disease patients, we detected a novel peak (m/z 2673.9) with low intensity that could be identified as hepcidin-24 and had previously remained unnoticed due to peak interference with the formerly used internal standard. Using a cell-based bioassay it was shown that synthetic hepcidin-24 was, like the -22 and -20 isoforms, a significantly less potent inducer of ferroportin degradation than hepcidin-25. During prolonged storage of plasma at room temperature, we observed that a decrease in plasma hepcidin-25 was paralleled by an increase in the levels of the hepcidin-24, -22 and -20 isoforms. This provides first evidence that all determinants for the conversion of hepcidin-25 to smaller inactive isoforms are present in the circulation, which may contribute to the functional suppression of hepcidin-25, that is significantly elevated in patients with renal impairment. The present update of our hepcidin TOF MS assay together with improved insights in the source and preparation of the internal standard, and sample stability will further improve our understanding of circulating hepcidin and pave the way towards further optimization and standardization of plasma hepcidin assays
    corecore