131 research outputs found
EFSA BIOHAZ Panel (EFSA Panel on Biologicial Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (solipeds)
A risk ranking process identified Trichinella spp. as the most relevant biological hazard in the context of meat inspection of domestic solipeds. Without a full and reliable soliped traceability system, it is considered that either testing all slaughtered solipeds for Trichinella spp., or inactivation meat treatments (heat or irradiation) should be used to maintain the current level of safety. With regard to general aspects of current meat inspection practices, the use of manual techniques during current post-mortem soliped meat inspection may increase microbial cross-contamination, and is considered to have a detrimental effect on the microbiological status of soliped carcass meat. Therefore, the use of visual-only inspection is suggested for “non-suspect” solipeds. For chemical hazards, phenylbutazone and cadmium were ranked as being of high potential concern. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account Food Chain Information (FCI), covering the specific on-farm environmental conditions and individual animal treatments, and the ranking of chemical substances, which should be regularly updated and include new hazards. Sampling, testing and intervention protocols for chemical hazards should be better integrated and should focus particularly on cadmium, phenylbutazone and priority “essential substances” approved for treatment of equine animals. Implementation and enforcement of a more robust and reliable identification system throughout the European Union is needed to improve traceability of domestic solipeds. Meat inspection is recognised as a valuable tool for surveillance and monitoring of animal health and welfare conditions. If visual only post-mortem inspection is implemented for routine slaughter, a reduction in the detection of strangles and mild cases of rhodococcosis would occur. However, this was considered unlikely to affect the overall surveillance of both diseases. Improvement of FCI and traceability were considered as not having a negative effect on animal health and welfare surveillance
Sources of antibiotic resistance: zoonotic, human, environment
Antibiotic resistance is a global problem that must be managed under the One Health perspective. Retrospectively, it is assumed that microbial populations able to cope with compounds with antimicrobial activity and susceptible bacteria lived in equilibrium for a thousand years. This situation would change in the middle 1940s of the twentieth century when one of the most important revolutions of modern medicine started - the use of a natural antimicrobial compound, the penicillin, to treat infectious bacterial diseases. Over the years, the massive use of antibiotics in human and animal medicine, as well as in animal production for both growth promotion and infection prophylaxis/metaphylaxis, accelerated and shaped one of the most successful evolutionary case studies. As a result of an impressive combination of genome and community dynamics, bacteria with acquired antibiotic resistance are nowadays widespread across different environmental compartments (water, soil, wildlife) as well as in the human food chain (poultry, livestock, aquaculture, produce). Hence, the evolutionary success of these bacteria turned to represent a major threat to the human health. This review discusses some of the drivers and paths of antibiotic resistance dissemination across zoonotic, human, and environmental sources.info:eu-repo/semantics/acceptedVersio
N2 Gas Flushing Limits the Rise of Antibiotic-Resistant Bacteria in Bovine Raw Milk during Cold Storage
Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N-2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25 degrees C. Here, the ability of N-2 gas (N) to tackle antibiotic-resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6 degrees C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log(10) ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage "time" factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6 degrees C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N-2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage potential while simultaneously hindering the increase of bacteria carrying antibiotic resistance/multi-resistance features.Peer reviewe
Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society
Wild edible plants (WEPs) are part of the cultural and genetic heritage of different regions of the world. In times of famine and scarcity, these sources of nutrients and health-promoting compounds have received high importance mainly in rural and suburban areas. Although currently underutilized, WEPs are still consumed traditionally by different communities and are gaining relevance in today's society. However, these foods lack recognition as significant contributors to the human diet in developed areas. This review describes the nutritional value of WEPs from the North-eastern region of Portugal and points out those containing potentially toxic compounds. Several retrieval strategies are presented with the aim of promoting the (re)use, production, commercialization and conservation of WEPs (wild harvested plants and crop wild relatives), and their importance for social, economic and agro-ecological development is highlighted.The authors are grateful to the Foundation for Science and Technology of Portugal and FEDER, under Programme PT2020, for financial support to CIMO (UID/AGR/00690/2013). J. Pinela thanks FCT for his grant (SFRH/BD/92994/2013) funded by European Social Fund and Portuguese Ministry of Education and Science (MEC) through Programa Operacional Capital Humano (POCH).info:eu-repo/semantics/publishedVersio
Medicines transparency at the European Medicines Agency (EMA) in the new information age: the perspectives of patients
Dietary supplementation with ferric tyrosine improves zootechnical performance and reduces caecal Campylobacter spp. load in poultry
The objective of this study was to evaluate the effect of ferric tyrosine on the reduction of Campylobacter spp. and zootechnical performance in broilers exposed to Campylobacter spp. using a natural challenge model to simulate commercial conditions. Additionally, the minimum inhibitory concentrations (MIC) of ferric tyrosine against common enteropathogens were evaluated.
On day 0, 840 healthy male day-old birds (Ross 308) were randomly allocated to 6 replicate pens of 35 birds and fed diets containing different concentrations of ferric tyrosine (0, 0.02, 0.05 and 0.2 g/kg) in mash form for 42 days.
Overall, broilers fed diets containing ferric tyrosine showed significantly improved body weight at day 42 and weight gain compared to the control group.
However, birds fed ferric tyrosine ate significantly more than the control birds so significant improvements in FCR were not observed.
Microbiological analyses of caecal samples collected on day 42 of the study showed, per gram sample, 2-3 log10 reduction in Campylobacter spp. and 1 log10 reduction in Escherichia coli in the groups fed diets containing ferric tyrosine compared to the control and Salmonella enterica, indicating that ferric tyrosine does not exert antimicrobial activity.
Collectively, these results show that birds fed ferric tyrosine grew faster and consumed more feed compared to the control birds indicating potential benefits of faster attainment of slaughter weight with no significant reduction on feed efficiency. Moreover, ferric tyrosine significantly reduces caecal Campylobacter spp. and E. coli indicating potential as a non-antibiotic feed additive to lower the risk of Campylobacter infections transmitted through the food chain
Back to the Roots : Revisiting the Use of the Fiber-Rich Cichorium intybus L. Taproots
Fibers are increasingly recognized as an indispensable part of our diet and vital for maintaining health. Notably, complex mixtures of fibers have been found to improve metabolic health. Following an analysis of the fiber content of plant-based products, we found the taproot of the chicory plant (Cichorium intybus L) to be 1 of the vegetables with the highest fiber content, comprising nearly 90% of its dry weight. Chicory roots consist of a mixture of inulin, pectin, and (hemi-)cellulose and also contain complex phytochemicals, such as sesquiterpene lactones that have been characterized in detail. Nowaday, chicory roots are mainly applied as a source for the extraction of inulin, which is used as prebiotic fiber and food ingredient. Chicory roots, however, have long been consumed as a vegetable by humans. The whole root has been used for thousands of years for nutritional, medicinal, and other purposes, and it is still used in traditional dishes in various parts of the world. Here, we summarize the composition of chicory roots to explain their historic success in the human diet. We revisit the intake of chicory roots by humans and describe the different types of use along with their various methods of preparation. Hereby, we focus on the whole root in its complex, natural form, as well as in relation to its constituents, and discuss aspects regarding legal regulation and the safety of chicory root extracts for human consumption. Finally, we provide an overview of the current and future applications of chicory roots and their contribution to a fiber-rich diet.Peer reviewe
Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A
Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further support the reliability of the two-and three-generation studies demonstrating a lack of estrogen-dependent effects at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/ kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive results from some explorative studies have not been confirmed in subsequent studies with higher numbers of animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, including newborns and babies
Comments on EFSA's opinion about the health claim “improvement of bowel function” for hydroxyanthracenic derivatives
- …
