

1	Dietary supplementation with ferric tyrosine improves zootechnical performance
2	and reduces caecal Campylobacter spp. load in poultry
3	
4	D. Currie ¹ , M. Green ² , O. A. Dufailu ² , M. Pitoulias ² , P. Soultanas ² , E. McCartney ³ , H.
5	Lester ³ , Liza Van den Eede ³ , J. Apajalahti ⁴ and J. Mahdavi ²
6	
7	¹ Roslin Nutrition Ltd., Gosford Estate, Aberlady, EH32 OPX, East Lothian, Scotland,
8	² School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, UK.
9	³ Pen & Tec Consulting S.L.U., Pl. Ausias March 1, 4 ^a Planta, D01, 08195, Sant Cugat
10	del Vallès, Barcelona, Spain,
11	⁴ Alimetrics Group Ltd., Koskelontie 19B, FIN-02920, Espoo, Finland
12	
13	Corresponding authors:
14	Hannah Lester. E-mail: Hannah@pentec-consulting.eu
15	Jafar Mahdavi. E-mail: Jafar.Mahdavi@nottingham.ac.uk
16	
17	Short title: Effect of ferric tyrosine in broilers
18	

19 Abstract –

20	1.	The objective of this study was to evaluate the effect of ferric tyrosine on the
21		reduction of Campylobacter spp. and zootechnical performance in broilers
22		exposed to Campylobacter spp. using a natural challenge model to simulate
23		commercial conditions. Additionally, the minimum inhibitory concentrations
24		(MIC) of ferric tyrosine against common enteropathogens were evaluated.
25	2.	On day 0, 840 healthy male day-old birds (Ross 308) were randomly allocated to
26		6 replicate pens of 35 birds and fed diets containing different concentrations of
27		ferric tyrosine (0, 0.02, 0.05 and 0.2 g/kg) in mash form for 42 days.
28	3.	Overall, broilers fed diets containing ferric tyrosine showed significantly
29		improved body weight at day 42 and weight gain compared to the control group.
30		However, birds fed ferric tyrosine ate significantly more than the control birds so
31		significant improvements in FCR were not observed.
32	4.	Microbiological analyses of caecal samples collected on day 42 of the study
33		showed, per gram sample, 2-3 \log_{10} reduction in <i>Campylobacter</i> spp. and 1 \log_{10}
34		reduction in Escherichia coli in the groups fed diets containing ferric tyrosine
35		compared to the control.

36	5.	The MIC of ferric tyrosine was >400 mg/L for <i>C. jejuni</i> and >200 mg/L for <i>E. coli</i>
37		and Salmonella enterica, indicating that ferric tyrosine does not exert
38		antimicrobial activity.
39	6.	Collectively, these results show that birds fed ferric tyrosine grew faster and
40		consumed more feed compared to the control birds indicating potential benefits
41		of faster attainment of slaughter weight with no significant reduction on feed
42		efficiency. Moreover, ferric tyrosine significantly reduces caecal Campylobacter
43		spp. and <i>E. coli</i> indicating potential as a non-antibiotic feed additive to lower the
44		risk of Campylobacter infections transmitted through the food chain.
45	Ke	wwords: Broilers, Campylobacter, control, ferric tyrosine, iron chelates

47 Introduction

48 Campylobacteriosis is the most common human food-borne illness in the European Union 49 (EU) (EFSA, 2017a) and along with other enteropathogenic bacteria such as Salmonella 50 spp. and Escherichia coli (Chaveerach et al., 2004b; Santini et al., 2010; Hermans et al., 51 2011), Campylobacter spp. pose a serious public health risk. Contaminated chicken meat 52 is a major source of human infection (Freidman et al., 2004; Adak et al., 2005; Bull et al., 53 2008), with ca. 200,000 reported cases of campylobacteriosis per year (EFSA, 2016). It 54 is estimated that 75% of EU broiler meat samples are contaminated with Campylobacter 55 spp. (EFSA, 2010). Campylobacter prevalence can be very high in poultry flocks, and is 56 maintained along the food chain (EFSA, 2010, 2011). Reducing the number of 57 contaminated carcasses entering the food chain will reduce the incidence of human cases 58 of campylobacteriosis, hence *Campylobacter* control measures must be implemented on 59 poultry farms to reduce human exposure (EFSA, 2011). It is estimated that reducing 60 caecal *Campylobacter* numbers by 3 log₁₀ CFU/g reduces the public health risk by 90% 61 (Romero-Barrios et al., 2013). However, controlling Campylobacter on farms poses 62 several serious challenges. A single bird infected with low numbers of Campylobacter 63 can infect a whole flock (Stern et al., 2001). Furthermore, chickens appear asymptomatic meaning that infection can go undetected (EC, 2017). Strict biosecurity measures have 64

65	proven to be effective in excluding Campylobacter from housed flocks in northern Europe
66	and the United Kingdom, but are difficult to maintain in the long-term under normal
67	farming conditions (ACMSF, 2004; Bull et al., 2008). Antibiotics are no longer a viable
68	option for control and are subject to global pressure to reduce use drastically, due to
69	growing concerns about antimicrobial resistance (AMR). EFSA has recently reported that
70	Campylobacter strains isolated from humans and pigs are resistant to ciprofloxacin and
71	tetracyclines, critically important antibiotics for human use (EFSA, 2017b). Similar data
72	were also reported for Salmonella spp. and E. coli isolates from fattening pigs,
73	highlighting the growing problem of AMR. The EU banned the use of antibiotics as
74	growth promoters in animal feeds in 2006 (EMA/EFSA, 2017) hence, there is an urgent
75	need for alternatives to antibiotics that can protect farm animals and limit the
76	establishment and growth of bacterial pathogens, in particular zoonotic micro-organisms.
77	Various feed additives have been proposed to reduce Campylobacter colonization in
78	chickens, including probiotics, prebiotics, organic acids, bacteriophages, bacteriocins,
79	and plant-derivatives, some of which have shown promising results (Hermans et al., 2011;
80	Guyard-Nicodème et al., 2015). Recently, in-feed chelated iron (III) complexes have
81	shown to be effective against Campylobacter and other pathogenic bacteria in broilers
82	(Khattak et al., 2018). However, in the study performed by Khattak et al., birds were

83	artificially challenged, so the purpose of the present study was to investigate whether iron
84	chelates have comparable effects under more natural infection conditions. The aim of the
85	present study was to evaluate the effect of ferric tyrosine (TYPLEX®, Akeso Biomedical
86	Inc.) on broiler zootechnical performance and reduction of caecal Campylobacter spp.
87	using birds naturally infected with Campylobacter spp. to simulate farm conditions.
88	Additionally, the minimum inhibitory concentrations (MIC) of ferric tyrosine against
89	common enteropathogens were evaluated to ascertain whether ferric tyrosine exerts
90	antimicrobial activity.
91	
92	Material and Methods
93	Experimental birds and diets
93 94	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee
93 94 95	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled
93 94 95 96	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled in compliance with local animal welfare standards and Directive 2010/63/EU.
93 94 95 96 97	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled in compliance with local animal welfare standards and Directive 2010/63/EU. A total of 1,100 pre-sexed, male day-old broilers (Ross 308) were purchased from a local
 93 94 95 96 97 98 	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled in compliance with local animal welfare standards and Directive 2010/63/EU. A total of 1,100 pre-sexed, male day-old broilers (Ross 308) were purchased from a local commercial hatchery and delivered to the trial site (56.0092°N, 2.8594°W) in Aberlady,
93 94 95 96 97 98 99	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled in compliance with local animal welfare standards and Directive 2010/63/EU. A total of 1,100 pre-sexed, male day-old broilers (Ross 308) were purchased from a local commercial hatchery and delivered to the trial site (56.0092°N, 2.8594°W) in Aberlady, Scotland. The trial site was an experimental research facility with animal housing set up
 93 94 95 96 97 98 99 100 	Experimental birds and diets The study protocol was approved by the Roslin Nutrition Ltd. Ethical Review Committee and the UK Food Standards Agency (FSA). The study birds were managed and handled in compliance with local animal welfare standards and Directive 2010/63/EU. A total of 1,100 pre-sexed, male day-old broilers (Ross 308) were purchased from a local commercial hatchery and delivered to the trial site (56.0092°N, 2.8594°W) in Aberlady, Scotland. The trial site was an experimental research facility with animal housing set up to simulate commercial conditions. Any chicks showing signs of ill-health, injury or in

102	programmable artificial light. The standard lighting program was 23 hours of light per
103	day, followed by 1-hour dark. Environmental conditions during the trial (temperature,
104	humidity and ventilation rate) were automatically controlled and appropriate for the age
105	of the broilers.

107 Ferric tyrosine (TYPLEX[®], Akeso Biomedical, Inc.) is an organo-iron complex of iron 108 (III) complexed with L-tyrosine (4-hydroxyphenylalanine). The dietary treatments are 109 summarised in Table 1. Control group (T1) was fed the basal diets (starter and grower). 110 The treated groups received the basal diets supplemented with ferric tyrosine at 0.02 g/kg (T2), 0.05 g/kg (T3) or 0.20 g/kg feed (T4). Birds were fed a starter diet from 0 to 21 days 111 112 and a grower diet from 21 to 41 days. All diets were formulated according to 113 recommended specifications (NRC, 1996) then analysed (AOAC, 2007) for crude 114 protein, ether extract, dry matter, iron and ash (Tables 2 and 3). Coloured tracers (Micro-115 Tracers Inc., San Francisco) were added to ferric tyrosine at 10% w/w, to enable visual 116 confirmation of ferric tyrosine content in feeds. Proximate analyses of feed samples 117 confirmed that feed nutrients were within expected ranges. Diets did not contain any other 118 added iron compounds, coccidiostats or veterinary antibiotics. Feed and water were 119 offered ad libitum.

120 Study design

121 On day 0, out of a pool of 1,100 birds, 840 healthy birds were randomly allocated to four 122 treatment groups: Control (T1), ferric tyrosine at 0.02 g/kg feed (T2), 0.05 g/kg (T3) or 123 0.20 g/kg feed (T4) with six replicate pens per group, each pen containing 35 birds, 124 according to a randomised complete block design. The birds were weighed by pen on 125 arrival and then on 21 and 42 days of trial. Individual bird body weight (BW) was 126 calculated by dividing the average weight of the pen by the number of birds. Feed 127 consumption and feed refusals were recorded by pen on day 21 and 42. Mortality/culls 128 were recorded daily. Average pen weight gain (AWG), feed intake (AFI) and feed 129 conversion rate (FCR, feed/gain) were calculated for periods 0-21, 22-42 and 0-42 days 130 on trial. At study end (42 days on trial), five birds/pen were humanely euthanized and 131 caecal samples were collected and sent for microbiology. The trial terminated after 42 132 days and all birds were humanely euthanised by cervical dislocation and the carcasses 133 destroyed.

134 *Campylobacter* spp. challenge

A natural *Campylobacter* challenge model was used whereby study birds were bedded on
fresh wood shavings, over which litter from the previous batch of broilers was laid. This
natural challenge model was developed at Roslin Nutrition. The natural challenge model

138 was selected to replicate as far as possible, a natural infection under commercial 139 conditions. Litter samples from previous batches of birds taken from the barn used for 140 this study had tested positive for *Campylobacter* spp. Furthermore, birds previously 141 housed in this barn had tested positive for *Campylobacter* spp. on several occasions.

142 Microbiology

143 On day 42, five birds per pen were humanely euthanised by cervical dislocation. The 144 caeca from each individual bird were removed and tied off to preserve caecal contents, 145 placed in a pre-labelled zip-lock bag and immediately placed on dry ice. The birds were 146 processed in descending order of ferric tyrosine concentration with the control birds 147 processed last to reduce the likelihood of cross-contamination. Sterile equipment was 148 used and changed between each treatment group. Latex gloves were worn by study staff 149 responsible for the removal of the caeca and were changed between treatment groups. 150 The samples were sent via courier to the microbiology laboratory for Campylobacter spp. 151 and E. coli enumeration by conventional culture. Caeca were stored frozen (-80°C) until 152 analysis. Prior to analysis, the caecal samples were removed from the freezer and allowed 153 to defrost. A sterile scalpel was used to cut off the blind end of both caecal sacks. From each caecal sack, 0.5 gram of caecal contents, in total 1g, was weighed into sterile 154 155 Universal bottles, diluted with 2 ml sterile Maximum Recovery Diluent (MRD, Oxoid,

156	Basingstoke, UK), and mixed thoroughly. This constituted the 1:2 dilution (w/v). Further
157	serial dilutions were made in MRD and 10 μ l of each dilution were inoculated on CCDA
158	and Brilliance CampyCount Agar plates (Oxoid, Basingstoke, UK), incubated
159	microaerophilically at 42°C for 24-48 hr and then assessed for the presence or absence of
160	thermotolerant Campylobacter species. The individual caeca from five birds per pen were
161	analysed in duplicate (i.e. two replicate samples analysed per bird). Plates of an
162	appropriate dilution were selected and putative colonies enumerated. As a confirmatory
163	measurement, two colonies from each presumptively positive plate were selected and sub-
164	cultured onto paired blood agar plates (Oxoid, Basingstoke, UK). These plates were
165	incubated at 37°C for 48 hr, one plate aerobically, one plate microaerophilically. The
166	presence of Campylobacter was indicated by a lack of growth aerobically and colonies
167	with Campylobacter morphology that grow microaerophilically. In addition, Gram stains
168	were carried out on all presumptively positive samples. As a further step, oxidase strips
169	(Oxoid, Basingstoke, UK) were used to confirm that samples were oxidase positive
170	(Cowan and Steel, 1965; Corry et al., 1995). The same series of samples were tested for
171	presence and absence of E. coli using chromogenic plates (Oxoid, Basingstoke, UK) and
172	incubated for 20 hr at 37°C, using the same procedure as reported for Campylobacter

enumeration. All results were expressed as colony forming units (CFU) per gram ofcaecal contents.

175 In addition, Polymerase chain reaction (PCR) was conducted on five representative 176 colonies isolated from CCDA plates from each treatment group to confirm the presence 177 of *C. jejuni* vs. *C. coli*. The primer sets in the multiplex PCR target the identification of 178 Campylobacter jejuni and Campylobacter coli based on the amplification of the two 179 genes, mapA (589 bp) C. jejuni and ceuE C. coli (462 bp). In addition, a 16S primer 180 (800bp) set was included as quality assurance of the DNA-preparation and analysis 181 (internal control). Between 3-4 colony morphotypes from each treatment group were examined. To avoid false negatives three different concentrations of each isolate's 182 183 template were used for PCR amplification.

184

185 Minimum inhibitory concentration assays (Growth inhibition studies with
 186 Campylobacter jejuni, Escherichia coli and Salmonella enterica)

Ferric tyrosine was subjected to two digestive phases to mimic digestion in the broiler gut. Ferric tyrosine is poorly soluble and the digestive steps were included to enhance product solubility and bioavailability. The pepsin digestion phase was performed to mimic conditions in the acidic proventriculus and the pancreatin digestion phase to mimic

191	conditions in the neutral duodenum. In brief, 240 mg ferric tyrosine was suspended in 5
192	ml of 50 mM Na-phosphate buffer pH 6.5. Then 2.25 ml of 150 mM HCl and 0.75 ml of
193	activated pepsin (1 mg/ml) in 10 mM HCl were added; and the pH adjusted to pH 2.1.
194	The resulting suspension was digested for 1 hr at 37 °C. Following the pepsin digestion
195	phase, 4 ml of 150 mM NaHCO ₃ , 2 ml of bovine bile (125 mg/ml in 150 mM NaHCO ₃)
196	and 2 ml of porcine pancreatin (12.5 mg/ml in 150 mM NaHCO ₃) were added to the
197	digested suspension and the pH was adjusted to 6.5 with NaOH. The suspension was then
198	left to digest for 3 hr at 37 °C after which the total volume was adjusted to 20 ml. A
199	positive control (PC) was prepared by following the steps described above, with no added
200	ferric tyrosine. The two digests (PC digest and 20 mM ferric tyrosine digest) were
201	sterilized by UV light before use in the MIC studies.
202	
203	For the MIC dilution study, C. jejuni strain DSM4688 grown in Müller-Hinton growth
204	medium, and E. coli strain 156/97 F4+ and S. enterica serovar Typhimurium strain IR715
205	both grown in Luria broth were added to 96-well microtitre plates (Merck, Germany)
206	containing the ferric tyrosine digest at concentrations ranging from 25.5 to 408 mg/L for
207	C. jejuni and 0.39 to 200 mg/L for E. coli and S. enterica, and the PC digest in dilutions
208	corresponding to the amounts of digest added with the ferric tyrosine. The range of

209	concentrations selected were chosen to meet or exceed the practical doses used in feed.
210	All plates were incubated at 38°C. Plates containing C. jejuni were read after 24 hr by
211	measuring fluorescence with a Perkin Elmer multimode plate reader after rendering
212	bacterial cells fluorescent with SYBR Green dye (Sigma Aldrich, Darmstadt, Germany).
213	Plates containing E. coli and S. enterica were read at 4 and 20 hr. Turbidity was measured
214	using a spectrophotometer at a wavelength 600 nm. The MIC value was defined as the
215	lowest product concentration that yields >50% reduction in growth obtained in cultures
216	with no added test product.

218 Statistical analyses

219 The pen was considered the experimental unit for zootechnical and microbiological data. 220 The arithmetic means of body weight, average daily gain, average feed intake and feed conversion rate were calculated per pen. The bacterial counts were transformed to log₁₀ 221 222 prior to analysis. Zootechnical and microbiological data were analysed by one-way 223 analysis of variance (ANOVA) using the General Linear Model (GLM) procedure in Unistat (Unistat Ltd., Version 6.5) according to the following model: $Yi = \mu + \alpha i + \epsilon i$, 224 225 where Yi was the dependent variable, μ was the overall mean, αi was the effect of treatment, and *\varepsilon* is was the residual error. For zootechnical and microbiological data, 226

227	significant differences were declared at P \leq 0.05, while near significant trends were
228	considered for 0.05 <p≤0.10. arithmetic="" by="" means="" post-hoc<="" separated="" td="" tukey's="" were=""></p≤0.10.>
229	comparison test. Results are reported as arithmetic means, the treatment probability (P)
230	and the pooled standard error of the mean (SEM). If Campylobacter counts are randomly
231	distributed among individual birds and pens, the counts obtained should follow a Poisson
232	distribution, where variance equals the mean. If variance exceeds the mean this indicates
233	overdispersion and demonstrates that the counts are not homogenous. The distribution of
234	caecal Campylobacter spp. and E. coli counts were assessed for overdispersion by
235	multiplying the variance to mean ratio by the number of degrees of freedom, and
236	comparing the results with the chi-square distribution (Bliss and Fisher, 1953).
237	Overdispersion was confirmed when P<0.05).
238	
239	Results
240	The effect of ferric tyrosine on broiler zootechnical performance during each study period
241	is summarised in Table 4. The mortality rate (including culled birds) was low and there
242	were no significant differences in mortality between treatment groups (T1, 6/210 (2.9%);
243	T2, 4/210 (1.9%); T3, 4/210 (1.9%); T4, 6/210 (2.9%)). The majority (13/20) of birds
244	were culled early in the study as poor or non-starters/small birds. During the first study
245	period (0 to 21 days on trial), broilers fed diets supplemented with ferric tyrosine (T2, T3

246	and T4) weighed significantly more at day 21 (+110 g, +130 g, +63 g; 630, 650, 583 vs .
247	520 g; P<0.001, P<0.001, P=0.002, respectively), and gained significantly more weight
248	(+110 g. +130 g, +63 g; 588, 608, 541 vs. 478 g; P<0.001, P<0.001, P=0.003,
249	respectively) compared to broilers fed the T1 Control diet. No significant differences were
250	noted in feed efficiency (Table 4). Similarly, during the second study period (22 to 42
251	days on trial), broilers fed T2, T3 and T4 diets weighed significantly more at study end
252	(+213 g, +190 g, +180 g; 2,081, 2,052, 2,048 vs. 1,868 g; P=0.002, P=0.008, P=0.009;
253	respectively) and broilers fed T2 and T3 diets consumed significantly more feed (+263 g,
254	+219 g; 2,751, 2,707 vs. 2,488 g; P=0.005, P=0.021; respectively) compared to broilers
255	fed the T1 Control diet. Broilers fed the T3 diet presented a significantly higher feed
256	conversion ratio (1.934 vs. 1.845, 1.827 g; P=0.014, P=0.003; respectively) compared to
257	broilers fed the T1 Control diet and the T4 diet. In addition, broilers receiving the T4 diet
258	tended to gain more weight (+117 g; 1,465 vs. 1,348 g; P=0.062; respectively) and to eat
259	more (+187 g; 2,675 vs. 2,488 g; P=0.057; respectively) compared to broilers fed the T1
260	Control diet. During the overall study period (0 to 42 days on trial) broilers fed the diets
261	containing ferric tyrosine (T2, T3 and T4) gained significantly more weight (+212 g, +182
262	g, +179 g; 2,039, 2,009, 2,006 vs. 1,827 g; P=0.002, P=0.008, P=0.009; respectively) and
263	ate significantly more feed (+385 g, +385 g, +258 g; 3,609, 3,609, 3,482 vs. 3,224 g;

P<0.001, P<0.001, P=0.027; respectively) compared to broilers fed the T1 Control diet.
No significant differences in feed efficiency were noted between the groups
supplemented with ferric tyrosine and the T1 Control group.

267 Microbiological counts from the caecal samples collected on day 42 are summarised in 268 Table 5. The results showed a significant reduction in *Campylobacter* spp. in birds fed 269 T3 and T4 diets compared to the birds fed the T1 Control diet (1.8 log₁₀ reduction, 270 P<0.001 and 2.5 log₁₀ reduction, P<0.001, respectively, Table 5 and Figure 1a) when 271 samples were grown on CCDA medium. Moreover, when samples were grown on 272 Brilliance medium, Campylobacter spp. counts were significantly reduced in birds fed 273 T2, T3 and T4 diets compared to the birds that were fed the T1 Control diet (1.2 log₁₀ 274 reduction, P=0.043; 2.4 log₁₀ reduction, P=0.001 and 3.1 log₁₀ reduction, P<0.001, 275 respectively, Table 5 and Figure 1b). There was a near-significant trend towards reduced 276 E. coli counts in broilers fed the T4 diet compared to broilers fed the T1 Control diet (1.3 277 log₁₀ reduction, P=0.083, respectively, Table 5 and Figure 1c). All individual birds in T1 278 tested positive for *Campylobacter* spp. and *E. coli*. Furthermore, Figure 1 shows the 279 distribution of the counts for each treatment groups and demonstrates that all pens in T1 280 were positive for Campylobacter spp. and E. coli. Additionally, all birds from T2 and T3 281 had positive Campylobacter counts and only two birds from T4, each from different pens

282	(pen 4 and pen 13), had a negative Campylobacter count. However, the other birds tested
283	from pen 4 & 13 were positive. Analysis of the distribution of the counts in T1 birds and
284	T1 pens showed that the distribution conformed to a Poisson distribution, where the mean
285	and variance are equal, indicating that the counts were homogenous among control birds
286	and pens and there was no significant overdispersion of counts. In comparison, significant
287	overdispersion was observed for the Campylobacter counts from Brilliance media for T3
288	and T4 (P=0.03 and P<0.001, respectively).
289	
290	Results from the PCR confirmed the presence of C. jejuni and C. coli.
291	
292	The MIC value for <i>C. jejuni</i> was >400 mg/L (Table 6) and >200 mg/L for <i>E. coli</i> and <i>S</i> .
293	enterica (Table 7). After 24 hr incubation, C. jejuni fluorescence increased by 29% when
294	exposed to the PC digest at a dilution corresponding to 408 mg/L ferric tyrosine and
295	increased by 13% when exposed to ferric tyrosine digest at 408 mg/L (Table 6). After 20
296	hr incubation, the turbidity of E. coli decreased by 61% with PC digest dilution
297	corresponding to digest provided with 49.9 mg/L ferric tyrosine digest and decreased by
298	14% at 200 mg/L ferric tyrosine digest (Table 7). Similarly, S. enterica turbidity

decreased by 37% after 20 hr incubation when exposed to the PC digest at 200 mg/L, and

300 turbidity increased by 5% after 20 hr when exposed to 200 mg/L ferric tyrosine (Table301 7).

302 **Discussion**

303 Here, the effects of ferric tyrosine on broiler zootechnical performance and caecal 304 *Campylobacter* spp. and *E. coli* were evaluated, along with an investigation into the MIC 305 of ferric tyrosine against C. jejuni, E. coli and S. enterica. The results from the present 306 study show that ferric tyrosine when administered in the feed of broilers, significantly 307 reduced caecal Campylobacter spp. (T3 and T4), reduced E. coli counts (T4), and 308 significantly improved weight gain at day 42, but did not affect FCR. Under the conditions of this study, ferric tyrosine added to diets at 0.02 g/kg, 0.05 g/kg and 0.20 309 310 g/kg led to a 1.2 log₁₀, 2.4 log₁₀ and 3.1 log₁₀ CFU/g reduction in caecal *Campylobacter* 311 spp. counts, respectively, when samples were grown on Brilliance media. These results 312 agree with those from a recent study that evaluated ferric tyrosine in broiler diets (Khattak 313 et al., 2018). In that study, the authors reported caecal *Campylobacter* reductions of 0.8 314 log₁₀, 1.9 log₁₀ and 2.0 log₁₀ CFU/g in birds fed ferric tyrosine at 0.02 g/kg, 0.05 g/kg and 315 0.20 g/kg, respectively. A recent quantitative microbial risk assessment (QMRA) 316 estimated that reducing caecal colonisation of birds at flock level by 2 log₁₀ or 3 log₁₀ CFU/g could reduce the incidence of human campylobacteriosis attributed to 317

318	contaminated broiler meat by 76% and 90%, respectively (Romero-Barrios et al., 2013).
319	Another earlier QMRA estimated that the incidence of disease in humans could be
320	reduced by 48%, 85% and 96% if carcass contamination with Campylobacter can be
321	reduced by 1, 2 or 3 \log_{10} CFU/g, respectively (Messens et al., 2007). According to these
322	figures, ferric tyrosine added to diets at 0.02 g/kg, 0.05 g/kg and 0.20 g/kg meets the
323	thresholds outlined in the two QMRAs, indicating that this product could be useful for
324	reducing the burden of Campylobacter on poultry farms, which may lead to a reduction
325	in broiler meat contamination at slaughter. Slight differences were observed in counts
326	when Campylobacter was grown on CCDA (Campylobacter Blood Free Selective Agar)
327	media, which can be used for the isolation of Campylobacter jejuni, Campylobacter coli
328	and Campylobacter lari. Brilliance CampyCount Agar is a medium specifically designed
329	for accurate, specific and easy enumeration of Campylobacter jejuni and Campylobacter
330	coli from poultry. It is a transparent medium on which Campylobacter produce distinct
331	dark red colonies, making identification and counting significantly easier than on
332	traditional charcoal or blood containing agar. PCR analysis confirmed the presence of C.
333	jejuni and C. coli. In addition to the reduction of caecal Campylobacter, a reduction in
334	caecal E. coli was also noted. Caecal E. coli counts were reduced by 1.0 log ₁₀ , 0.7 log ₁₀
335	and $1.3 \log_{10}$ CFU/g in birds fed ferric tyrosine at 0.02 g/kg, 0.05 g/kg and 0.20 g/kg feed,

336 respectively. These results agree with those of Khattak et al. (2018) who reported 337 reductions of 0.6 log₁₀, 0.8 log₁₀ and 1.2 log₁₀ CFU/g, respectively. It has been suggested 338 that E. coli infection is established more easily in birds infected with Campylobacter (Bull 339 et al., 2008) and an epidemiological study reported increased E. coli in chicken carcasses 340 infected with Campylobacter (Duffy et al., 2014). Moreover, translocation of E. coli to 341 the liver, spleen and caecum increases in birds infected with C. *jejuni* (Awad et al., 2016). 342 This evidence would suggest that *Campylobacter* infection may positively influence the 343 establishment of other pathogenic microbial populations, which could have serious 344 implications for public health. In addition, the emergence of antibiotic resistance to 345 Campylobacter spp. in humans and animals underlines the need for non-antibiotic 346 alternatives to aid Campylobacter control on farms. 347

In this study, a natural challenge model was used, whereby study birds were housed in a barn that had housed broilers that previously tested positive for *Campylobacter* spp. on several occasions, and were placed in in pens containing dirty litter from an earlier study, in which birds had tested positive for campylobacters. This study design did not quantify the level of infection before or during the study. However, on day 42, all caecal samples collected from control birds tested positive for *Campylobacter* spp., and the counts followed a Poisson distribution indicating that the infection was homogenous among individual birds and pens. Furthermore, as the layout of pens followed a randomised block design, it is assumed that all pens were exposed to a similar level of *Campylobacter* spp. challenge. It has been shown that a single bird harbouring low numbers of *Campylobacter* can infect a whole flock, (Stern et al., 2001) and that once a flock becomes *Campylobacter* positive, the surrounding environment becomes widely contaminated (Herman et al., 2003) and contamination can persist for several weeks (Johnsen et al., 2006).

361

362 The MIC results presented in this study show that ferric tyrosine does not exert antimicrobial activity against the strains of C. jejuni, E. coli and S. enterica tested. MICs 363 364 of >400 mg/L and >200 mg/L were reported for C. jejuni and E. coli and S. enterica, 365 respectively, which are much higher than MIC thresholds used to monitor antimicrobial 366 susceptibility and resistance. Furthermore, effective antimicrobials inhibit or kill 367 *Campylobacter* spp. at low concentrations. According to recent guidelines, cut-off values for erythromycin, tetracycline and ciprofloxacin against Campylobacter jejuni are ≤ 4 368 369 mg/L, ≤ 2 mg/L and ≤ 0.5 mg/L, respectively, while the cut-off values for ampicillin, 370 ciprofloxacin and colistin when tested against Salmonella spp. and E. coli are $\leq 8 \text{ mg/L}$, ≤ 0.06 mg/L and ≤ 2 mg/L, respectively (ECDC, 2016). This study has shown that ferric 371

372	tyrosine does not inhibit or kill Campylobacter spp. at concentrations up to 400 mg/mL,
373	which is much higher than the ferric tyrosine concentration in the feed or broiler gut.
374	Hence, these results indicate that ferric tyrosine does not exhibit classic antibiotic activity
375	at up to 400 mg/mL.

377 Significant improvements in final body weight and weight gain were observed in the birds 378 fed ferric tyrosine in comparison to the birds fed the control diet. Similar results were 379 observed in the study conducted by Khattak et al. (2018). C. jejuni infection can 380 significantly impair the growth performance of poultry (Awad et al., 2014a,) and a highly significant negative association between *Campylobacter* and feed efficiency has been 381 382 reported (Sparks, 2016). Campylobacter infection downregulates the gene expression of 383 various carrier proteins responsible for the absorption of nutrients (Awad et al., 2014b), 384 leading to decreased nutrient adsorption and reduced growth performance. 385

386 Aspects of *Campylobacter* pathogenesis remain poorly understood, particularly 387 molecular host-pathogen interactions. Human histo-blood group antigens (BgAgs) are 388 often targeted by mucosal organisms to aid adherence prior to invasion. The BgAgs-389 binding adhesins of *C. jejuni* have been identified as the major subunit protein of the

390	flagella (FlaA) and the major outer membrane protein (MOMP) (Mahdavi et al., 2014).
391	MOMP is a member of the trimeric bacterial porin family that assists the mucosal
392	adhesion and invasion of C. jejuni (Mahdavi et al., 2014). Porins are involved in the
393	uptake of nutrients through the outer membrane by passive diffusion along concentration
394	gradients (Ferarra et al., 2016). MOMP is also able to bind to multiple host cell
395	membranes by promoting biofilm formation and auto-aggregation. The actual mode of
396	action of ferric tyrosine is unknown, but some bacteria use specific outer membrane
397	receptors to uptake ferric iron. It is thought that ferric tyrosine may be able to bind to
398	MOMP and block the interaction of MOMP on the surface of Campylobacter with the
399	BgAgs of the gastrointestinal epithelial cells. As a result, it prevents Campylobacter
400	colonization of the avian gut by reducing biofilm formation. A recent study has
401	demonstrated that ferric tyrosine inhibits biofilm formation in vitro (Khattak et al., 2018),
402	which supports the assumed mode of action.

403

Campylobacter remains a real threat to public health. With prophylactic administration 404 of antibiotics at farm level no longer a viable control option due to increasing antibiotic 405 resistance, there is a critical need to find non-antibiotic alternatives that can be used in 406 407 conjunction with on-farm biosecurity measures to reduce Campylobacter colonisation of

- 408 poultry flocks. In conclusion, the results from the present study illustrate that ferric
 409 tyrosine can significantly reduce caecal *Campylobacter* spp. and *E. coli* and improve bird
 410 weight gain, indicating that this feed additive may contribute to control of *Campylobacter*411 spp. under commercial poultry production conditions.

413 Acknowledgements.

414 This study was funded by Akeso Biomedical, Inc., Waltham, MA, USA.

415

417 **References**

- Adak, GK., Meakins, SM., Yip, H., Lopman, BA. & O'Brien, SJ. (2005) Disease risks
 from foods, England and Wales, 1996-2000. *Emerging Infectious Diseases*, 11:
 365-372.
- 421 Advisory Committee for the Microbial Safety of Foods (ACMSF). (2004) ACMSF
 422 second report on *Campylobacter*. HSMO, London, United Kingdom.
- 423 AOAC (2007) Official Methods of Analysis. Association of Analytical Chemists, AOAC
 424 International, Arlington, Virginia, USA.
- 425 Awad, WA., Aschenbach, JR., Ghareeb, K., Khayal, B., Hess, C., & Hess, M. (2014a)
 426 *Campylobacter jejuni* influences the expression of nutrient transporter genes in
 427 the intestine of chickens. *Veterinary Microbiology*, 172: 195-201.
- Awad, WA., Dublecz, F., Hess, C., Dublecz, K., Khayal, B., Aschenbach, JR. & Hess,
 M. (2016) *Campylobacter jejuni* colonization promotes the translocation of *Escherichia coli* to extra-intestinal organs and disturbs the short-chain fatty acids
 profiles in the chicken gut. *Poultry Science*; 95: 2259-2265.
- Awad, WA., Molnár, A., Aschenbach, JR., Ghareeb, K., Khayal, B., Hess, C., Liebhart,
 D., Dublecz, K., & Hess, M. (2014b) *Campylobacter* infection in chickens
 modulates the intestinal epithelial barrier function. *Innate Immunity*, 21:151-160.
 doi: 10.1177/1753425914521648.
- Bliss, CI. & Fisher, RA. (1953) Fitting the negative binomial distribution to biological
 data. *Biometrics*, 9: 176-200.
- Bull, SA., Thomas, A., Humphrey, T., Ellis-Iversen, J., Cook, AJ., Lovell, R. &
 Jorgensen, F. (2008) Flock health indicators and *Campylobacter* spp. in
 commercial housed broilers reared in Great Britain. *Applied and Environmental Microbiology*, 74: 5408-5413.
- Chaveerach, P., Lipman, LJA. & Van Knapen, F. (2004) Antagonistic activities of several
 bacteria on *in vitro* growth of 10 strains of *Campylobacter jejuni/coli*. *International Journal of Food Microbiology*, 90: 43-50.
- 445 Corry, JEL., Post, DE., Colin, P. & Laisney, MJ. (1995) Culture media for the isolation
 446 of *Campylobacters*. *International Journal of Food Microbiology*, 26: 43-76.
- 447 Cowan, ST. & Steel, KJ. (1965) Characters of Gram-negative bacteria. Manual for the
 448 identification of Medical Bacteria, Cambridge University Press.
- 449 Duffy, LL., Blackall, PJ., Cobbold, RN. & Fegan N. (2014) Quantitative effects of in-line
 450 operations on *Campylobacter* and *Escherichia coli* through two Australian broiler
 451 processing plants. *International Journal of Food Microbiology*, 188: 128 134.

- European Center for Disease Control (ECDC) (2016) EU Protocol for harmonised
 monitoring of antimicrobial resistance in human *Salmonella* and *Campylobacter*isolates. ISBN 978-92-9193-890-2, doi 10.2900/516074.
- European Commission (EC) (2017) Overview report on the mitigation measures in place
 for Campylobacter spp. in poultry. Ares(2017)5924645-04/12/2017.
- European Food Safety Authority (EFSA) (2010) Scientific opinion on quantification of
 the risk posed by broiler meat to human campylobacteriosis in the EU. *EFSA Journal*, 8(1):1437.
- 460 European Food Safety Authority (EFSA). (2011). Scientific Opinion on *Campylobacter*461 in broiler meat production: control options and performance objectives and/or
 462 targets at different stages of the food chain. *EFSA Journal*, 9: 2105.
- 463 European Food Safety Authority (EFSA) (2016) The European Union summary report on
 464 trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in
 465 2015. *EFSA Journal*, 14: 4634.
- European Food Safety Authority (EFSA) (2017a) The European Union summary report
 on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in
 2016. *EFSA Journal*, 15(12):5077.
- European Food Safety Authority (EFSA) (2017b) The European Union summary report
 on resistance in zoonotic and indicator bacteria from humans, animals and food in
 2015. *EFSA Journal*, 14: 4634.
- European Medicines Agency (EMA) and European Food Safety Authority (EFSA) (2017)
 EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use
 antimicrobial agents in animal husbandry in the European Union, and the resulting
 impacts on food safety (RONAFA). *EFSA Journal*, 15(1);4666.
- Fererra, LGM., Wallet, GD., Moynié, L., Dhanasekar, NN., Aliouane, S., AcostaGutiérrez, S., Pagès, J., Bolla, J., Winterhalter, M., Ceccarelli, M. & Naismith,
 JH. (2016) MOMP from Campylobacter jejuni is a trimer of 18-stranded β-barrel
 monomers with a Ca²⁺ ion bound at the constriction zone. *Journal of Molecular Biology*, 428: 4528-4543.
- Friedman, CR., Hoekstra, RM., Samuel, M., Marcus, R., Bender, J., Shiferaw, B., Reddy,
 S, Ahuja, SD., Helfrick, DL., Hardnett, F., Carter, M., Anderson, B., RV, Tauxe.,
 et al. (2004) Risk factors for sporadic Campylobacter infection in the United
 States: a case-control study in FoodNet sites. *Clinical Infectious Diseases*, 38:
 S285-S296.
- 486 Guyard-Nicodème, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le Berre, B.,
 487 Sánchez, J., Vesseur, P., Martín, Á., Medel, P. & Chemaly, M. (2015) Efficacy of

- 488 feed additives against Campylobacter in live broilers during the entire rearing
 489 period. *Poultry Science*, 00:1–8 <u>http://dx.doi.org/10.3382/ps/pev303</u>.
- Herman L., Heyndrickx M., Grijspeerdt K., Vandekerchove D., Rollier I. and De Zutter
 L. (2003). Routes for *Campylobacter* contamination of poultry meat:
 Epidemiological study from hatchery to slaughterhouse. *Epidemiology and Infection*, 131: 1169-80.
- Hermans, D., Martel, A., van Deun, M., van Immerseel, K., Heyndrickx, M.,
 Haesebrouck, F. & Pasmans. (2011) The cinnamon-oil ingredient transcinnamaldehyde fails to target *Campylobacter jejuni* strain KC 40 in the broiler
 chicken caecum despite marked in vitro activity. *Journal of Food Protection*, 74:
 1729-1734.
- Johnsen G., Kruse H. & Hofshagen M. (2006) Genetic diversity and description of
 transmission routes for *Campylobacter* on broiler farms by amplified-fragment
 length polymorphism. *Journal of Applied Microbiology*, 101: 1130-39.
- 502 Khattak, F., Paschalis, V., Green, M., Houdijk, J., Soultanas, P. & Mahdavi, J. (2018)
 503 TYPLEX, a novel feed additive, inhibits *Campylobacter jejuni* Biofilm formation
 504 and caecal colonization in broiler chicken. Poultry Science, 0:1-9
 505 http://dx.doi.org/10.3382/ps/pex413.
- Mahdavi, J., Pirinccioglu, N., Oldfield, NJ., Carlsohn, E., Stoof, J., Aslam, A., Self, T.,
 Cawthraw, SA., Petrovska, L., Colborne, N., Sihlbom, C., Borén, T., Wooldridge,
 KG. & Ala'Aldeen, DAA. (2014) A novel *O*-linked glycan modulates *Campylobacter jejuni* major outer membrane protein-mediated adhesion to
 human histo blood group antigens and chicken colonization. *Open Biology*, 4:
 130-202.
- Messens, W., Hartnett, E., Gellynck, X., Viaene, J., Halet, D., Herman, L. & Grijspeerdt,
 K. (2007) Quantitative risk assessment of human campylobacteriosis through the
 consumption of chicken meat in Belgium. In, XVIII European Symposium on the
 Quality of Poultry Meat and The XII European Symposium on the Quality of Eggs
 and Egg productsPrague, Czech Republic, pp. 167-168.
- 517 NRC (1996) Guide for the care and use of laboratory animals. National Academy Press,
 518 Washington, DC.
- Romero-Barios, P., Hempen, M., Messens, W., Stella, P. & Hugas, M. (2013).
 Quantitative microbiological risk assessment (QRMA) of food-borne zoonoses
 and the European level. *Food Control*, 29: 343-349.
- Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D & Biavati, B.
 (2010) Characterisation of probiotics strains: an application as feed additives in

- 524poultry against Campylobacter jejuni. International Journal of Food525Microbiology, 141: \$98-\$108.
- 526 Sparks, N. (2016) On-farm control of Campylobacter. 27th Australian Poultry Science
 527 Symposium, ISSN-1034-6260, 125-132.
- 528 Stern, NJ., Cox, NA., Musgrove, MT. & Park, CM. (2001) Incidence and levels of
 529 Campylobacter in broilers after exposure to an inoculated seeder birds. *Journal of*530 *Applied Poultry Research*, 10: 315-318.
- Thibodeau, A., Fravalo, P., Yergeau, E., Arsenault, J., Lahaye, L. & Letellier, A. (2015)
 Chicken caecal microbiome modifications induced by *Campylobacter jejuni*colonization and by a non-antibiotic feed additive. *PLOS One*, 10: e0131978.

Table 1. Experimental diets

Treatment	Ferric tyrosine, g/kg feed	Microtraced ¹ Ferric tyrosine g/kg feed	
T1	Control – 0 g/kg	0	
T2	T1 + 0.02 g/kg feed	0.022^{2}	
T3	T1 + 0.50 g/kg feed	0.055^{2}	
T4	T1 + 0.20 g/g/feed	0.220^{2}	

¹1 g of microtracer contains 60,000 violet graphite particles ²Microtracers at 10% in test products

Ingradiants (%)	Starter Mash	Grower Mash
Ingreutents (%)	1-21 days of age	22-42 days of age
Wheat	69.862	67.354
Barley	-	7.5
Soybean meal, 48% CP	23.4	21.4
Sodium bicarbonate	0.13	0.22
Fishmeal 66%	2.5	-
Soy oil	1.3	1.4
L-lysine HCl	0.128	0.175
DL-methionine	0.123	0.164
Choline chloride	0.067	0.067
Dicalcium phosphate	0.13	0.32
Calcium carbonate	1.74	0.74
Sodium chloride	0.12	0.16
Minerals and vitamins ¹	0.5	0.5
Total	100	100
Calculated analyses (%, unless specifi	ed differently)	
ME Broiler, MJ/kg	11.526	12.346
Crude protein	21	19
Crude fibre	2.73	2.914
Ash	5.796	4.571
Dry matter	72.97	77.503
Crude fat	3.0	3.0
Lysine	1.18	1.050
Methionine	0.45	0.438
Methionine + cysteine	0.797	0.766
Threonine	0.75	0.661
Tryptophan	0.259	0.237
Calcium	1.102	0.651
Sodium	0.126	0.142

Table 2. Feed composition and calculated analyses

¹Supplies per kg feed: Vit A: 0.010 MIU; Vit D₃: 0.005MIU; Vit E: 50mg; Vit K₃: 3 mg; Vit B₁: 2.0 mg; Vit B₂: 7 mg; Vit B₆: 5 mg; Vit B₁₂: 15 μ g; Folic acid: 1.0 mg; Biotin: 0.2 mg; Pantothenic acid: 15 mg; 3a315 niacinamide: 50 mg; Mo 0.5 mg Mn: 100 mg; Zn: 80 mg; I: 1.0 mg; Cu: 10 mg; Se: 0.20 mg, Fe: 267 mg

Sample	Diet	Ferric tyrosine, g/kg	Moisture (%)	Crude protein (%)	Ether extract (%)	Ash (%)	Fe (mg/kg)	Ferric tyrosine- microtracer (% recovery ¹)	Calculated ferric tyrosine content (g/kg)
T1	Starter	0	11.6	20.4	3.1	5.5	125	NA	NA
T2		0.02	11.5	20.3	2.9	5.4	189	131	0.026
T3		0.05	11.3	20.6	2.9	5.5	198	118	0.059
T4		0.20	11.3	20.5	2.9	5.3	196	107	0.214
T1	Grower	0	11.9	19.1	3.2	4.2	171	NA	NA
T2		0.02	11.9	18.7	3.0	4.2	159	98	0.020
T3		0.05	11.9	18.7	3.0	4.7	185	85	0.043
T4		0.20	11.5	19.1	3.0	4.4	166	81	0.162

Table 3. Analysed values of experimental diets

543 NA – Not applicable; ¹Calculated ferric tyrosine = % recovery of microtracer x ferric tyrosine dose

544 **Table 4.** Effect of dietary addition of ferric tyrosine on broiler zootechnical performance545 parameters for each study period.

546

Parameter	Treatment			SE	Treatment P-	
	T1	T2	Т3	T4	-	value
	0 g/kg	0.02 g/kg	0.05 g/kg	0.20 g/kg		(ANOVA)
	ferric	ferric	ferric	ferric		
	tyrosine	tyrosine	tyrosine	tyrosine		
BW 1 d (g)	41.81	42.00	42.48	42.19	0.135	0.364^{NS}
BW 21 d, (g)	520ª	630 ^c	650°	583 ^b	11.6	0.001
BW 42 d (g)	1,868ª	2,081 ^b	2,052 ^b	2,048 ^b	24.0	0.001
AWG 1-21 d (g)	478 ^a	588°	608°	541 ^b	11.5	<0.001
AWG 22-42 (g)	1,348 ^x	1,451 ^{xy}	1,401 ^{xy}	1,465 ^y	17.2	0.055
AWG 1-42 d (g)	1,827 ^a	2,039 ^b	2,009 ^b	2,006 ^b	24.0	0.002
AFI 1-21 d (g)	737 ^a	859 ^{bc}	901°	807 ^{ab}	16.5	<0.001
AFI 22-42 (g)	2,488 ^{a,x}	2,751 ^b	2,707 ^b	2,675 ^{ab,y}	30.8	0.005
AFI 1-42 d (g)	3,224ª	3,609 ^b	3,609 ^b	3,482 ^b	42.8	<0.001
FCR 1-21 d (g)	1.539	1.462	1.484	1.488	0.0138	0.240 ^{NS}
FCR 22-42 (g)	1.845 ^a	1.898 ^{ab,y}	1.934 ^b	1.827 ^{a,x}	0.0124	0.002
FCR 1-42 d (g)	1.765 ^{xy}	1.771 ^{xy}	1.798 ^y	1.736 ^x	0.0087	0.083

547 Results show least square mean of 6 replicate pens. N° replicates/treatment = 6 pens of 35 male birds/ treatment; Means

548 separated by Tukey Test. SE = Standard error; BW = mean bird body weight; AWG = mean pen weight gain; AFI =

549 mean pen feed intake; FCR = feed/gain; NS – not significant. Values in same column with no common abc superscript

are significantly different (P≤0.05); Values in same column with no common xy superscript exhibit a near-significant

551 trend (0.05<P \le 0.10). Text in bold = significant result (P \le 0.05); text in italics = near-significant trend (0.05<P \le 0.10).

Table 5. Caecal *Campylobacter* spp. and *E. coli* counts at 42 days of age (log₁₀ CFU/g)

Tractment	Dess a/lta	Campylob	E. coli	
Treatment	Dose g/kg	Caeca ¹	Caeca ²	Caeca
T1 Control	0	5.879°	4.799°	6.438 ^y
T2 Ferric tyrosine	0.02	4.989 ^{bc}	3.621 ^b	5.449 ^{xy}
T3 Ferric tyrosine	0.05	4.104 ^{ab}	2.399 ^a	5.736 ^{xy}
T4 Ferric tyrosine	0.20	3.366 ^a	1.681 ^a	5.118 ^x
SEM		0.1301	0.1448	0.1843
Treatment P-value (ANOVA)		<0.001	<0 001	0 104

Iteration r-value (ANOVA)<0.001<0.0010.104N° replicates = 6 replicate pens per treatment. Results show group least square mean of 6 replicate pens
1 Caecal samples cultured on CCDA medium; 2 Caecal samples cultured on Brilliance medium, SEM =
standard error of the mean.

Values in same column with no common abc superscript are significantly different ($P \le 0.05$) Values in same column with no common xy superscript exhibit a near-significant trend ($0.05 < P \le 0.10$)

D	Ferric tyrosine	Fluorescence after 24	MIC		
Bacterium	(mg/L)	¹ Positive control digest	Ferric tyrosine digest	(mg/L)	
	25.5	2.58	2.38		
	51	2.90	3.75		
C. jejuni	102	2.82	2.83	> 400	
5 5	204	3.27	3.41		
	408	3.34	2.68		

Table 6. Effect of ferric tyrosine on the growth of *Campylobacter jejuni* DSM4688 and
minimum inhibitory concentrations (MIC).

558

559

560 ¹ No product was added to the positive control digest. The concentration shown indicates that dilution of

the digest was the same as that used for the corresponding ferric tyrosine digest.

563	Table 7. Effect of ferric tyrosine on the growth of Escherichia coli 156/97 F4+ and
564	Salmonella enterica serovar Typhimurium strain IR715 and the minimum inhibitory
565	concentrations (MIC).

	Ferric					
Bacterium	tyrosine	¹ Positive of	control digest	Ferric tyros	ine digest	MIC (mg/L)
	(mg/L)	4h growth	20h growth	4h growth	20h growth	
	0.39	0.20	0.38	0.19	0.36	
	0.78	0.17	0.38	0.18	0.34	
	1.56	0.16	0.35	0.18	0.36	
	3.12	0.15	0.32	0.19	0.36	
F 1:	6.24	0.15	0.29	0.20	0.37	
E. coli	12.5	0.15	0.23	0.20	0.37	> 200
	24.9	0.16	0.20	0.20	0.37	
	49.9	0.14	0.15	0.20	0.36	
	99.8	0.15	0.15	0.19	0.33	
	200	0.17	0.15	0.18	0.31	
	0.39	0.25	0.65	0.28	0.61	
	0.78	0.26	0.64	0.27	0.61	
	1.56	0.25	0.65	0.28	0.61	
	3.12	0.22	0.62	0.28	0.62	
G	6.24	6.24 0.24	0.63	0.28	0.62	
S. enterica	12.5	0.25	0.61	0.28	0.62	> 200
	24.9	0.25	0.61	0.27	0.63	
	49.9	0.26	0.60	0.27	0.62	
	99.8	0.26	0.49	0.24	0.61	
	200	0.25	0.41	0.23	0.64	

567 ¹ No product was added with the positive control digest. The concentration shown indicates that dilution

568 of the digest was the same as that used for the corresponding ferric tyrosine digest.

571 Figure captions

- 572
- 573 Figure 1. Boxplots showing the distribution of caecal *Campylobacter* spp. and *E. coli*
- 574 counts at Day 42: a. Caecal *Campylobacter* spp. counts (log₁₀ CFU/g) grown on CCDA
- 575 media, **b.** Caecal *Campylobacter* spp. counts (log₁₀ CFU/g) grown on Brilliance media,
- 576 **c.** Caecal *E. coli* counts (\log_{10} CFU/g) grown on chromogenic media
- 577