71 research outputs found

    Antithymocyte Globulin in Reduced-Intensity Conditioning Regimen Allows a High Disease-Free Survival Exempt of Long-Term Chronic Graft-versus-Host Disease

    Get PDF
    AbstractNonmyeloablative (NMA) regimens allow the use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients considered unfit for standard myeloablative conditioning (MAC) regimens using high-dose alkylating agents with or without total body irradiation (TBI). Reduced-intensity conditioning (RIC) regimens, based on fludarabine (Flu), busulfan (Bu), and rabbit antithymocyte globulin (r-ATG), represent an intermediate alternative between NMA and MAC regimens. This platform was subsequently optimized by the introduction of i.v. Bu and the use of 5 mg/kg r-ATG, based on the hypothesis that these modifications would improve the safety of RIC allo-HSCT. Here we report a study conducted at our institution on 206 patients, median age 59 years, who underwent allo-HSCT after conditioning with Flu, 2 days of i.v. Bu, and 5 mg/kg r-ATG (FBx-ATG) between 2005 and 2012. The prevalence of grade III-IV acute graft-versus-host disease (GVHD) was 9%, and that of extensive chronic GVHD was 22%. Four-year nonrelapse mortality (NRM), relapse, and overall survival (OS) rates were 22%, 36%, and 54%, respectively. NRM tended to be influenced by comorbidities (hematopoietic cell transplantation–specific comorbidity index [HCT-CI] <3 versus HCT-CI ≄3: 18% versus 27%; P = .075), but not by age (<60 years, 20% versus ≄60 years, 25%; P = .142). Disease risk significantly influenced relapse (2 years: low, 8%, intermediate, 28%, high, 34%; very high, 63%; P = .017). Both disease risk (hazard ratio [95% confidence interval]: intermediate, 2.1 [0.8 to 5.2], P = .127; high, 3.4 [1.3 to 9.1], P = .013; very high, 4.0 [1.1 to 14], P = .029) and HCT-CI (hazard ratio [95% confidence interval]: HCT-CI ≄3, 1.7 (1.1 to 2.8), P = .018) influenced OS, but age and donor type did not. The FBx-ATG RIC regimen reported here is associated with low mortality and high long-term disease-free survival without persistent GVHD in both young and old patients. It represents a valuable platform for developing further post-transplantation strategies aimed at reducing the incidence of relapse, particularly in the setting of high-risk disease

    Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Different Classes of Antidepressants

    Get PDF
    Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Fecundity and egg fertility in the adult Colorado beetle (Leptinotarsa decemlineata) surviving larval infection by the fungus Beauveria bassiana

    No full text
    Secondary effects of the entomopathogenic hyphomycete Beauveria bassiana (Bals.) Vuill. were investigated on adults of Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) treated as newly moulted 4th‐instar larvae. Fecundity and egg hatching were monitored in surviving females mated with surviving males. When reared at 22 °C, adult survivors showed a lessening of their reproductive potential during their whole life. According to the fungal inoculum dosage, the reductions of the total number of eggs laid per female and the mean number of eggs per egg mass ranged from 20% to 56% and from 18% to 46%, respectively. In contrast, at 25 °C, the fecundity of survivors was not affected by the fungal infection. This variability of the secondary effects of B. bassiana according to temperature conditions might be related to the lower infection level of treated larvae at 25 °C. Moreover, at both temperatures, eggs laid by females surviving fungal infection as larvae were as fertile as eggs laid by control insects. It is concluded that secondary effects of B. bassiana on the fecundity of the Colorado Potato Beetle are temperature‐dependent and that they could become negligible at high temperatures under field conditions. FĂ©conditĂ© et fertilitĂ© du dorvphore (Leptinotarsa decemlineata) contaminĂ© par l\u27hyphomycĂšte Beauveria bassiana au 4Ăšme stade larvaire Les effets secondaires de l\u27hyphomycĂšte entomopathogĂšne, Beauveria bassiana (Bals.) Vuill. sur la fĂ©conditĂ© et la fertilitĂ© des insectes survivant Ă  l\u27infection fongique ont Ă©tĂ© Ă©tudiĂ©s chez les adultes du doryphore Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) issus de larves contaminĂ©es en dĂ©but de 4Ăšme stade. Les insectes maintenus Ă  22 °C ont prĂ©sentĂ© une rĂ©duction de leur potentiel reproductif. Ainsi, suivant la dose d\u27inoculum fongique, le nombre total d\u27oeufs pondus par femelle et le nombre moyen d\u27oeufs par ooplaque ont baissĂ© de 20% Ă  56% et de 18% Ă  46%, respectivement. En revanche, Ă  25 °C la fĂ©conditĂ© des adultes survivants n\u27a pas Ă©tĂ© affectĂ©e par la maladie. Cette variabilitĂ© en fonction des conditions thermiques peut ĂȘtre liĂ©e Ă  la diminution de l\u27effet‐dose du champignon sur les larves Ă  25 °C par rapport Ă  22 °C. Par ailleurs, quelles que soient les conditions thermiques (22 °C ou 25 °C) on ne constate aucun changement significatif de la fertilitĂ© des oeufs pondus par les femelles survivantes. Les auteurs concluent que les effets secondaires de B. bassiana sur la fĂ©conditĂ© du doryphore dĂ©pendent des conditions thermiques et qu\u27ils pourraient devenir n6gligeables Ă  des tempĂ©ratures Ă©1evĂ©es en plein champ. 1991 The Netherlands Entomological Societ
    • 

    corecore