187 research outputs found

    The Geometry of D=11 Null Killing Spinors

    Full text link
    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008.Comment: 30 pages, typos corrected, reference added, new solution included in section 5.1; uses JHEP3.cl

    Approach to ergodicity in quantum wave functions

    Full text link
    According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wavefunctions of classically ergodic systems tend to the microcanonical density on the energy shell. We here develop a semiclassical theory that relates the rate of approach to the decay of certain classical fluctuations. For uniformly hyperbolic systems we find that the variance of the quantum matrix elements is proportional to the variance of the integral of the associated classical operator over trajectory segments of length THT_H, and inversely proportional to TH2T_H^2, where TH=hρˉT_H=h\bar\rho is the Heisenberg time, ρˉ\bar\rho being the mean density of states. Since for these systems the classical variance increases linearly with THT_H, the variance of the matrix elements decays like 1/TH1/T_H. For non-hyperbolic systems, like Hamiltonians with a mixed phase space and the stadium billiard, our results predict a slower decay due to sticking in marginally unstable regions. Numerical computations supporting these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and uuencoded using uufiles, to appear in Phys Rev E. For related papers, see http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm

    An assessment of Evans' unified field theory I

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and typos removed, partly reformulated, taken care of M.W.Evans' rebutta

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Repulsive Casimir-Polder forces from cosmic strings

    Full text link
    We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence of the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely as the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays as the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir-Polder potential on the orientation of the polarizability tensor principal axes also leads to the moment of force acting on the particle.Comment: 16 pages, 2 figure

    Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance

    Get PDF
    Much of the human resource management literature has demonstrated the impact of high performance work systems (HPWS) on organizational performance. A new generation of studies is emerging in this literature that recommends the inclusion of mediating variables between HPWS and organizational performance. The increasing rate of dynamism in competitive environments suggests that measures of employee adaptability should be included as a mechanism that may explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the study’s results confirm that HPWS influences performance through its impact on the firm’s human resource (HR) flexibility

    Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy

    Get PDF
    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter laboratory variations are discussed using a Cs,FA,MA Pb I,Br 3 halide perovskite thin film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance free JV curve with a potential power conversion efficiency of 24.6 . For grainsizes above amp; 8776;20 nm, intra grain charge transport is characterized by terahertz sum mobilities of amp; 8776;32 cm2 V amp; 8722;1 s amp; 8722;1. Drift diffusion simulations indicate that these intra grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presente
    corecore