1,957 research outputs found

    Comparison of hysterosalpingograms with laparoscopy in the diagnostic of tubal factor of female infertility at the Yaoundé General Hospital, Cameroon

    Get PDF
    Introduction: The objectives were to assess the diagnostic value of hysterosalpingography (HSG) with laparoscopy as gold standard in the evaluation of tubal patency and pelvic adhesions in women suffering from infertility. Methods: We conducted a comparative cross sectional study on 208 medical files of infertile women followed up at the Yaoundé General Hospital during a period of five years (December 2007 to December 2012). Tubal patency, hydrosalpinx and pelvic adhesions detected at HSG were compared with laparoscopic findings as the gold standard. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy of HSG were calculated with 95% confidence interval (CI). Results: Mean age of the patients was 31.4± 6.45 years. Secondary infertility was the most frequent type of infertility (66.82%). HSG had a moderate sensitivity (51.0%; 95% IC. 37.5-64.4), high specificity (90.0 %; 95% IC.74.4-96.5), high PPV (89.3 %; 95% IC. 72.8-96.3) and a moderate NPV (52.9%; 95% IC. 39.5-65.9) in the diagnosis of bilateral proximal tubal occlusion. Concerning, distal tubal patency, HSG had a high sensitivity (86.8%; 95% IC. 76.7-92.9), low specificity (42.2%; 95% CI. 29.0-56.7), moderate PPV (69.4%; 95% IC. 58.9-78.2) and a moderate NPV (67.9%; 95% IC. 49.3-82.0) in the diagnosis of bilateral or unilateral distal tubal occlusion. However, HSG had a low diagnostic value (27.8%; 95%IC.18.8-39.0) in the pelvic adhesions. Conclusion: HSG is of limited diagnostic value in tubal factor infertility and is of low diagnostic value for pelvic adhesions.Pan African Medical Journal 2015; 2

    Tailored algorithms for the detection of the atmospheric boundary layer height from common automatic lidars and ceilometers (ALC)

    Get PDF
    A detailed understanding of atmospheric boundary layer (ABL) processes is key to improve forecasting of pollution dispersion and cloud dynamics in the context of future climate scenarios. International networks of automatic lidars and ceilometers (ALC) are gathering valuable data that allow for the height of the ABL and its sublayers to be derived in near real time. A new generation of advanced methods to automatically detect the ABL heights now exist. However, diversity in ALC models means these algorithms need to be tailored to instrument-specific capabilities. Here, the advanced algorithm STRATfinder is presented for application to high signal-to-noise ratio (SNR) ALC observations, and results are compared to an automatic algorithm designed for low-SNR measurements (CABAM). The two algorithms are evaluated for application in an operational network setting. Results indicate that the ABL heights derived from low-SNR ALC have increased uncertainty during daytime deep convection, while high-SNR observations can have slightly reduced capabilities in detecting shallow nocturnal layers. Agreement between the ALC-based methods is similar when either is compared to the ABL heights derived from temperature profile data. The two independent methods describe very similar average diurnal and seasonal variations. Hence, high-quality products of ABL heights may soon become possible at national and continental scales

    Developmental expression of 4-repeat-Tau induces neuronal aneuploidy in Drosophila tauopathy models

    Get PDF
    Tau-mediated neurodegeneration in Alzheimer's disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development

    Haploinsufficiency of Dmxl2, Encoding a Synaptic Protein, Causes Infertility Associated with a Loss of GnRH Neurons in Mouse

    Get PDF
    International audienceCharacterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3a, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3a was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3a controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological phenotype, with abnormal glucose metabolism and gonadotropic axis deficiency due to a loss of GnRH neurons. Our findings identify rabconectin-3a as a key controller of neuronal and endocrine homeostatic processes

    Fostering Energy Efficiency in manufacturing plants through economical breakthroughs in power and flow rate measurement

    Get PDF
    International audienceThe ability to measure, monitor and control energy consumption at several key locations in a manufacturing plant is a major prerequisite for any efficient energy management program. To identify and evaluate energy savings, one must get a clear view of how the energy is used. Furthermore, measuring energy flows is one of the necessary conditions for long lasting energy-efficient solutions. Most of the time energy managers are reluctant to put in place power and flow rate measuring devices either because of their cost or because this implies disrupting production. To find acceptable and economical solutions for long lasting energy measurements in Industry, EDF R&D launched a 3-year collaborative research project called CHIC. This project is funded by the French National Research Agency (ANR) and involves 7 partners. Its total budget amounts to 2.55 M€. Because energy measuring devices acceptability relies mostly on their ability to be installed without disrupting production as well as on their installation and maintenance costs, two non intrusive and low cost technologies will be explored within the project: A physical approach is being used to build a clamp-on power meter that could be installed around multi-conductors power cables without interrupting power supply, A software based approach is being used to build power and flow meters that derive the sought-for variable from models and from simple and easy to collect other physical measurements (e.g. command signals, etc...). Introductio

    Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective

    Get PDF
    In the last two decades, technological progress has not only seen improvements to the quality of atmospheric upper-air observations but also provided the opportunity to design and implement automated systems able to replace measurement procedures typically performed manually. Radiosoundings, which remain one of the primary data sources for weather and climate applications, are still largely performed around the world manually, although increasingly fully automated upper-air observations are used, from urban areas to the remotest locations, which minimize operating costs and challenges in performing radiosounding launches. This analysis presents a first step to demonstrating the reliability of the automatic radiosonde launchers (ARLs) provided by Vaisala, Meteomodem and Meisei. The metadata and datasets collected by a few existing ARLs operated by the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) certified or candidate sites (Sodankylä, Payerne, Trappes, Potenza) have been investigated and a comparative analysis of the technical performance (i.e. manual versus ARL) is reported. The performance of ARLs is evaluated as being similar or superior to those achieved with the traditional manual launches in terms of percentage of successful launches, balloon burst and ascent speed. For both temperature and relative humidity, the ground-check comparisons showed a negative bias of a few tenths of a degree and % RH, respectively. Two datasets of parallel soundings between manual and ARL-based measurements, using identical sonde models, provided by Sodankylä and Faa'a stations, showed mean differences between the ARL and manual launches smaller than ±0.2 K up to 10 hPa for the temperature profiles. For relative humidity, differences were smaller than 1 % RH for the Sodankylä dataset up to 300 hPa, while they were smaller than 0.7 % RH for Faa'a station. Finally, the observation-minus-background (O–B) mean and root mean square (rms) statistics for German RS92 and RS41 stations, which operate a mix of manual and ARL launch protocols, calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model, are very similar, although RS41 shows larger rms(O–B) differences for ARL stations, in particular for temperature and wind. A discussion of the potential next steps proposed by GRUAN community and other parties is provided, with the aim to lay the basis for the elaboration of a strategy to fully demonstrate the value of ARLs and guarantee that the provided products are traceable and suitable for the creation of GRUAN data products

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe
    corecore