368 research outputs found

    Safety of vaccination against SARS-CoV-2 in people with rheumatic and musculoskeletal diseases: results from the EULAR Coronavirus Vaccine (COVAX) physician-reported registry

    Get PDF
    OBJECTIVES: To describe the safety of vaccines against SARS-CoV-2 in people with inflammatory/autoimmune rheumatic and musculoskeletal disease (I-RMD). METHODS: Physician-reported registry of I-RMD and non-inflammatory RMD (NI-RMDs) patients vaccinated against SARS-CoV-2. From 5 February 2021 to 27 July 2021, we collected data on demographics, vaccination, RMD diagnosis, disease activity, immunomodulatory/immunosuppressive treatments, flares, adverse events (AEs) and SARS-CoV-2 breakthrough infections. Data were analysed descriptively. RESULTS: The study included 5121 participants from 30 countries, 90% with I-RMDs (n=4604, 68% female, mean age 60.5 years) and 10% with NI-RMDs (n=517, 77% female, mean age 71.4). Inflammatory joint diseases (58%), connective tissue diseases (18%) and vasculitis (12%) were the most frequent diagnostic groups; 54% received conventional synthetic disease-modifying antirheumatic drugs (DMARDs), 42% biological DMARDs and 35% immunosuppressants. Most patients received the Pfizer/BioNTech vaccine (70%), 17% AstraZeneca/Oxford and 8% Moderna. In fully vaccinated cases, breakthrough infections were reported in 0.7% of I-RMD patients and 1.1% of NI-RMD patients. I-RMD flares were reported in 4.4% of cases (0.6% severe), 1.5% resulting in medication changes. AEs were reported in 37% of cases (37% I-RMD, 40% NI-RMD), serious AEs in 0.5% (0.4% I-RMD, 1.9% NI-RMD). CONCLUSION: The safety profiles of SARS-CoV-2 vaccines in patients with I-RMD was reassuring and comparable with patients with NI-RMDs. The majority of patients tolerated their vaccination well with rare reports of I-RMD flare and very rare reports of serious AEs. These findings should provide reassurance to rheumatologists and vaccine recipients and promote confidence in SARS-CoV-2 vaccine safety in I-RMD patients

    VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis

    Get PDF
    Tumour angiogenesis has become an important target for antitumour therapy, with most current therapies aimed at blocking the VEGF pathway. However, not all tumours are responsive to VEGF blockers, and some tumours that are responsive initially may become resistant during the course of treatment, thus there is a need to explore other angiogenesis signalling pathways. Recently, the Delta-Notch pathway, and particularly the ligand Delta-like 4 (Dll4), was identified as a new target in tumour angiogenesis. An important feature in angiogenesis is the manifold ways in which the VEGF and Delta-Notch pathways interact. The emerging picture is that the VEGF pathway acts as a potent upstream activating stimulus for angiogenesis, whereas Delta-Notch helps to guide cell fate decisions that appropriately shape the activation. Here we review the two signalling pathways and what is currently known about the ways in which they interact during tumour angiogenesis

    Long-range transport of airborne microbes over the global tropical and subtropical ocean

    Get PDF
    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth’s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33–68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.En prens

    Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus

    Get PDF
    The pemphigus group comprises the autoimmune intraepidermal blistering diseases classically divided into two major types: pemphigus vulgaris and pemphigus foliaceous. Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus are rarer forms that present some clinical, histological and immunopathological characteristics that are different from the classical types. These are reviewed in this article. Future research may help definitively to locate the position of these forms in the pemphigus group, especially with regard to pemphigus herpetiformis and the IgG/ IgA pemphigus.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology DepartmentUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology and Pathology DepartmentsUNIFESP, EPM, Dermatology DepartmentUNIFESP, EPM, Dermatology and Pathology DepartmentsSciEL

    A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability

    Get PDF
    Corals build reefs through accretion of calcium carbonate (CaCO3) skeletons, but net reef growth also depends on bioerosion by grazers and borers and on secondary calcification by crustose coralline algae and other calcifying invertebrates. However, traditional field methods for quantifying secondary accretion and bioerosion confound both processes, do not measure them on the same time-scale, or are restricted to 2D methods. In a prior study, we compared multiple environmental drivers of net erosion using pre- and post-deployment micro-computed tomography scans (μCT; calculated as the % change in volume of experimental CaCO3 blocks) and found a shift from net accretion to net erosion with increasing ocean acidity. Here, we present a novel μCT method and detail a procedure that aligns and digitally subtracts pre- and post-deployment μCT scans and measures the simultaneous response of secondary accretion and bioerosion on blocks exposed to the same environmental variation over the same time-scale. We tested our method on a dataset from a prior study and show that it can be used to uncover information previously unattainable using traditional methods. We demonstrated that secondary accretion and bioerosion are driven by different environmental parameters, bioerosion is more sensitive to ocean acidity than secondary accretion, and net erosion is driven more by changes in bioerosion than secondary accretion

    Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis, the growth of capillaries from preexisting blood vessels, has been extensively studied experimentally over the past thirty years. Molecular insights from these studies have lead to therapies for cancer, macular degeneration and ischemia. In parallel, mathematical models of angiogenesis have helped characterize a broader view of capillary network formation and have suggested new directions for experimental pursuit. We developed a computational model that bridges the gap between these two perspectives, and addresses a remaining question in angiogenic sprouting: how do the processes of endothelial cell elongation, migration and proliferation contribute to vessel formation?</p> <p>Results</p> <p>We present a multiscale systems model that closely simulates the mechanisms underlying sprouting at the onset of angiogenesis. Designed by agent-based programming, the model uses logical rules to guide the behavior of individual endothelial cells and segments of cells. The activation, proliferation, and movement of these cells lead to capillary growth in three dimensions. By this means, a novel capillary network emerges out of combinatorially complex interactions of single cells. Rules and parameter ranges are based on literature data on endothelial cell behavior in vitro. The model is designed generally, and will subsequently be applied to represent species-specific, tissue-specific in vitro and in vivo conditions.</p> <p>Initial results predict tip cell activation, stalk cell development and sprout formation as a function of local vascular endothelial growth factor concentrations and the Delta-like 4 Notch ligand, as it might occur in a three-dimensional in vitro setting. Results demonstrate the differential effects of ligand concentrations, cell movement and proliferation on sprouting and directional persistence.</p> <p>Conclusion</p> <p>This systems biology model offers a paradigm closely related to biological phenomena and highlights previously unexplored interactions of cell elongation, migration and proliferation as a function of ligand concentration, giving insight into key cellular mechanisms driving angiogenesis.</p

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore