1,365 research outputs found

    Ground state order and spin-lattice coupling in tetrahedral spin systems Cu2Te2O5X2

    Get PDF
    High-resolution ac susceptibility and thermal conductivity measurement on Cu2Te2O5X2(X=Br,Cl) single crystals are reported. For Br-sample, sample dependence prevents to distinguish between possibilities of magnetically ordered and spin-singlet ground states. In Cl-sample a three-dimensional transition at 18.5 K is accompanied by almost isotropic behavior of susceptibility and almost switching behavior of thermal conductivity. Thermal conductivity studies suggest the presence of a tremendous spin-lattice coupling characterizing Cl- but not Br-sample. Below the transition Cl-sample is in a complex magnetic state involving AF order but also the elements consistent with the presence of a gap in the excitation spectrum.Comment: version accepted for publication in Phys.Rev.B-Rapid Communicatio

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Testimony Regarding the First Amendment Defense Act (FADA)

    Get PDF
    My testimony today is delivered on behalf of twenty leading legal scholars who have joined me in providing an in depth analysis of the meaning and likely effects of the First Amendment Defense Act (FADA), were it to become law. We feel particularly compelled to provide testimony to this Committee because the first legislative finding set out in FADA declares that: “Leading legal scholars concur that conflicts between same-sex marriage and religious liberty are real and should be addressed through legislation.” As leading legal scholars we must correct this statement: we do not concur that conflicts between same-sex marriage and religious liberty are real, nor do we hold the view that any such conflict should be addressed through legislation. On the contrary, we maintain that religious liberty rights are already well protected in the U.S. Constitution and in existing federal and state legislation, rendering FADA both unnecessary and harmful

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Influence of internal disorder on the superconducting state in the organic layered superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    Full text link
    We report high-sensitivity AC susceptibility measurements of the penetration depth in the Meissner state of the layered organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br. We have studied nominally pure single crystals from the two different syntheses and employed controlled cooling procedures in order to minimize intrinsic remnant disorder at low temperatures associated with the glass transition, caused by ordering of the ethylene moieties in BEDT-TTF molecule at T_G = 75 K. We find that the optimal cooling procedures (slow cooling of -0.2 K/h or annealing for 3 days in the region of T_G) needed to establish the ground state, depend critically on the sample origin indicating different relaxation times of terminal ethylene groups. We show that, in the ground state, the behavior observed for nominally pure single crystals from both syntheses is consistent with unconventional d-wave order parameter. The in-plane penetration depth lambda_in(T) is strongly linear, whereas the out-of-plane component lambda_out(T) varies as T^2. In contrast, the behavior of single crystals with long relaxation times observed after slow (-0.2 K/h) cooling is as expected for a d-wave superconductor with impurities (i.e. lambda_in(T) propto lambda_out(T) propto T^2) or might be also reasonably well described by the s-wave model. Our results might reconcile the contradictory findings previously reported by different authors.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors

    Get PDF
    We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters
    corecore