2,575 research outputs found

    CMS Optical Links: Lessons learned from Mass Production

    Get PDF
    The CMS Tracker will install over 40000 optical links in its data-readout and control system, representing an unprecedented deployment of this technology in a Particle Physics Experiment. After reviewing the Quality Process employed in this project, a summary of the performance data measured during production will be shown. The analysis of this data will then be used to illustrate how the performance of the installed system may be predicted, giving confidence that the specified functionality will be attained in the final system. Completion of the production has allowed reflection upon the processes used and improvements for future such projects will be given in the form of some lessons learned

    An artificial neural network predictor for tropospheric surface duct phenomena

    Get PDF
    International audienceIn this work, an artificial neural network (ANN) model is developed and used to predict the presence of ducting phenomena for a specific time, taking into account ground values of atmospheric pressure, relative humidity and temperature. A feed forward backpropagation ANN is implemented, which is trained, validated and tested using atmospheric radiosonde data from the Helliniko airport, for the period from 1991 to 2004. The network's quality and generality is assessed using the Area Under the Receiver Operating Characteristics (ROC) Curves (AUC), which resulted to a mean value of about 0.86 to 0.90, depending on the observation time. In order to validate the ANN results and to evaluate any further improvement options of the proposed method, the problem was additionally treated using Least Squares Support Vector Machine (LS-SVM) classifiers, trained and tested with identical data sets for direct performance comparison with the ANN. Furthermore, time series prediction and the effect of surface wind to the presence of tropospheric ducts appearance are discussed. The results show that the ANN model presented here performs efficiently and gives successful tropospheric ducts predictions

    Multi-level optical signal generation using a segmented-electrode InP IQ-MZM with integrated CMOS binary drivers

    Get PDF
    We present a segmented-electrode InP IQ-MZM, capable of multi-level optical signal generation (5-bit per I/Q arm) by employing direct digital drive from integrated, low-power (1W) CMOS binary drivers. Programmable, multi-level operation is demonstrated experimentally on one MZM of the device

    Semiconductor Optical Amplifier (SOA)–Based Amplification of Intensity-Modulated Optical Pulses — Deterministic Timing Jitter and Pulse Peak Power Equalization Analysis

    Get PDF
    During the last few years, large-scale efforts towards realizing high-photonic integration densities have put SOAs in the spotlight once again. Hence, the need to develop a complete framework for SOA-induced signal distortion to accurately evaluate a system’s performance has now become evident. To cope with this demand, we present a detailed theoretical and experimental investigation of the deterministic timing jitter and the pulse peak power equalization of SOA-amplified intensity-modulated optical pulses. The deterministic timing jitter model relies on the pulse mean arrival time estimation and its analytic formula reveals an approximate linear relationship between the deterministic timing jitter and the logarithmic values of intensity modulation when the SOA gain recovery time is faster than the pulse period. The theoretical analysis also arrives at an analytic expression for the intensity modulation reduction (IMR), which clearly elucidates the pulse peak power equalization mechanism of SOA. The IMR analysis shows that the output intensity modulation depth is linearly related to the respective input modulation depth of the optical pulses when the gain recovery time is faster than the pulse period. This novel theoretical platform provides a qualitative and quantitative insight into the SOA performance in case of intensity-modulated optical pulses

    Quaternary TDM-PAM as upgrade path of access PON beyond 10Gb/s

    Get PDF
    A 20 Gb/s quaternary TDM-PAM passive optical network with chirped and non-linear optical transmitters is experimentally demonstrated. The migration from legacy TDM-PONs and the implications of using available 10 Gb/s components are analyzed. We show that a loss budget of 27.3 dB is compatible together with a packet power ratio of 10 dB between loud and soft optical network units. (c) 2012 Optical Society of Americ

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    A Gas Leak Rate Measurement System for the ATLAS MUON BIS-Monitored Drift Tubes

    Get PDF
    A low-cost, reliable and precise system developed for the gas leak rate measurement of the BIS-Monitored Drift Tubes (MDTs) for the ATLAS Muon Spectrometer is presented. In order to meet the BIS-MDT mass production rate, a total number of 100 tubes are tested simultaneously in this setup. The pressure drop of each one of the MDT is measured, within a typical time interval of 48 hours, via a differential manometer comparing with the pressure of a gas tight reference tube. The precision of the method implemented is based on the system temperature homogeneity, with accuracy of ÄT = 0.3 oC. For this reason, two thermally isolated boxes are used testing 50 tubes each of them, to achieve high degree of temperature uniformity and stability. After measuring several thousands of the MDTs, the developed system is confirmed to be appropriate within the specifications for testing the MDTs during the mass production

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore