1,738 research outputs found

    Studies of vector boson production at CMS

    Get PDF
    The most recent diboson production and electroweak physics results from CMS are presented. This overview is focused on the precise measurement of WW, WZ, ZZ and γγ production, as well as W or Z production in association with a photon. These results are interpreted in terms of constraints on anomalous triple gauge couplings, while the study of WWγ and WZγ production is used to set limits on anomalous quartic gauge couplings. Selection of the latest electroweak results is also presented

    Vestibulo-Hippocampal Function Is Enhanced and Brain Structure Altered in Professional Ballet Dancers

    Get PDF
    Background and Objective: Life-long balance training has been shown to affect brain structure, including the hippocampus. Data are missing in this respect on professional ballet dancers of both genders. It is also unknown whether transfer effects exist on general balancing as well as spatial orientation abilities, a function mainly supported by the hippocampus. We aimed to assess differences in gray matter (GM) structure, general balancing skills, and spatial orientation skills between professional ballet dancers and non-dancers.Methods: Nineteen professional ballet dancers aged 18–35 (27.5 ± 4.1 years; 10 females) and nineteen age-matched non-dancers (26.5 ± 2.1 years; 10 females) were investigated. Main outcomes assessed were the score of a 30-item clinical balance test (CBT), the average error distance (in centimeters) on triangle completion task, and difference in GM density as seen by voxel-based morphometric analysis (VBM, SPM).Results: Ballet group performed significantly better on all conditions of the CBT and in the wheelchair (vestibular-dependent) condition of the spatial orientation test. Larger GM volumes for ballet dancers were observed in the right hippocampus, parahippocampal gyrus, insula, and cingulate motor cortex, whereas both larger and smaller volumes were detected within cerebellum bilaterally in comparison to non-dancers.Conclusion: Our results indicate that life-long ballet training could lead to better clinically relevant balancing abilities as well as vestibular-dependent spatial orientation capabilities; both of the benefits might be caused by positive influence of ballet training on the vestibular system function, and—possibly—its connectivity with temporal lobe regions responsible for vestibular-dependent orienting in space

    Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors

    Get PDF
    Age-related degenerations in brain structure are associated with balance disturbances and cognitive impairment. However, neuroplasticity is known to be preserved throughout lifespan and physical training studies with seniors could reveal volume increases in the hippocampus (HC), a region crucial for memory consolidation, learning and navigation in space, which were related to improvements in aerobic fitness. Moreover, a positive correlation between left HC volume and balance performance was observed. Dancing seems a promising intervention for both improving balance and brain structure in the elderly. It combines aerobic fitness, sensorimotor skills and cognitive demands while at the same time the risk of injuries is low. Hence, the present investigation compared the effects of an 18-month dancing intervention and traditional health fitness training on volumes of hippocampal subfields and balance abilities. Before and after intervention, balance was evaluated using the Sensory Organization Test and HC volumes were derived from magnetic resonance images (3T, MP-RAGE). Fourteen members of the dance (67.21 ± 3.78 years, seven females), and 12 members of the fitness group (68.67 ± 2.57 years, five females) completed the whole study. Both groups revealed hippocampal volume increases mainly in the left HC (CA1, CA2, subiculum). The dancers showed additional increases in the left dentate gyrus and the right subiculum. Moreover, only the dancers achieved a significant increase in the balance composite score. Hence, dancing constitutes a promising candidate in counteracting the age-related decline in physical and mental abilities

    TET-mediated DNA hydroxymethylation is negatively influenced by the PARP-dependent PARylation

    Get PDF
    Background Poly(ADP-ribosyl)ation (PARylation), a posttranslational modification introduced by PARP-1 and PARP-2, has first been implicated in DNA demethylation due to its role in base excision repair. Recent evidence indicates a direct influence of PARP-dependent PARylation on TET enzymes which catalyse hydroxymethylation of DNA—the first step in DNA demethylation. However, the exact nature of influence that PARylation exerts on TET activity is still ambiguous. In our recent study, we have observed a negative influence of PARP-1 on local TET-mediated DNA demethylation of a single gene and in this study, we further explore PARP–TET interplay. Results Expanding on our previous work, we show that both TET1 and TET2 can be in vitro PARylated by PARP-1 and PARP-2 enzymes and that TET1 PARylation negatively affects the TET1 catalytic activity in vitro. Furthermore, we show that PARylation inhibits TET-mediated DNA demethylation at the global genome level in cellulo. Conclusions According to our findings, PARP inhibition can positively influence TET activity and therefore affect global levels of DNA methylation and hydroxymethylation. This gives a strong rationale for future examination of PARP inhibitors' potential use in the therapy of cancers characterised by loss of 5-hydroxymethylcytosine

    Toward a New Philosophy of Preventive Nutrition: From a Reductionist to a Holistic Paradigm to Improve Nutritional Recommendations

    Get PDF
    The reductionist approach has been predominant to date in human nutrition research and has unraveled some of the fundamental mechanisms at the basis of food nutrients (e.g., those that involve deficiency diseases). In Western countries, along with progress in medicine and pharmacology, the reductionist approach helped to increase life expectancy. However, despite 40 y of research in nutrition, epidemics of obesity and diabetes are growing each year worldwide, both in developed and developing countries, leading to a decrease in healthy life years. Yet, interactions between nutrition-health relations cannot be modeled on the basis of a linear cause-effect relation between 1 food compound and 1 physiologic effect but rather from multicausal nonlinear relations. In other words, explaining the whole from the specific by a bottom-up reductionist approach has its limits. A top-down approach becomes necessary to investigate complex issues through a holistic view before addressing any specific question to explain the whole. However, it appears that both approaches are necessary and mutually reinforcing. In this review, Eastern and Western research perspectives are first presented, laying out bases for what could be the consequences of applying a reductionist versus holistic approach to research in nutrition vis-a-vis public health, environmental sustainability, breeding, biodiversity, food science and processing, and physiology for improving nutritional recommendations. Therefore, research that replaces reductionism with a more holistic approach will reveal global and efficient solutions to the problems encountered from the field to the plate. Preventive human nutrition can no longer be considered as "pharmacology" or foods as "drugs.

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV
    corecore