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Background and Objective: Life-long balance training has been shown to affect brain
structure, including the hippocampus. Data are missing in this respect on professional
ballet dancers of both genders. It is also unknown whether transfer effects exist on
general balancing as well as spatial orientation abilities, a function mainly supported by
the hippocampus. We aimed to assess differences in gray matter (GM) structure, general
balancing skills, and spatial orientation skills between professional ballet dancers and
non-dancers.

Methods: Nineteen professional ballet dancers aged 18–35 (27.5 ± 4.1 years; 10
females) and nineteen age-matched non-dancers (26.5 ± 2.1 years; 10 females) were
investigated. Main outcomes assessed were the score of a 30-item clinical balance
test (CBT), the average error distance (in centimeters) on triangle completion task, and
difference in GM density as seen by voxel-based morphometric analysis (VBM, SPM).

Results: Ballet group performed significantly better on all conditions of the CBT and in
the wheelchair (vestibular-dependent) condition of the spatial orientation test. Larger GM
volumes for ballet dancers were observed in the right hippocampus, parahippocampal
gyrus, insula, and cingulate motor cortex, whereas both larger and smaller volumes were
detected within cerebellum bilaterally in comparison to non-dancers.

Conclusion: Our results indicate that life-long ballet training could lead to better
clinically relevant balancing abilities as well as vestibular-dependent spatial orientation
capabilities; both of the benefits might be caused by positive influence of ballet training
on the vestibular system function, and—possibly—its connectivity with temporal lobe
regions responsible for vestibular-dependent orienting in space.
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INTRODUCTION

Ballet dancing does not only require the coordination of
complex movement patterns but also demanding in terms of
the processing of vestibular input and maintaining balance.
The assumption of a vestibulo-hippocampal dependency is
supported by previous research in humans which showed
that complete abolition of vestibular input, due to bilateral
vestibulectomy, leads to atrophy in distinct medial temporal
lobe areas (Brandt et al., 2005). Results of more recent studies
also revealed hippocampal changes in patients suffering from
various vestibular system disorders (Zu Eulenburg et al., 2010;
Göttlich et al., 2016; Kremmyda et al., 2016). Multiple pathways
that exist between the two have been discovered (Hitier et al.,
2014), and there is a disruption in function of the latter
when the input from the former ceases (Stackman et al., 2002;
Russell et al., 2003). One study on professional ballet dancers,
together with slackliners and ice-skaters, has demonstrated
structural differences in temporal brain regions, particularly
the hippocampus, compared to normal controls (Hüfner et al.,
2011). This study could not, however, answer the question on
neuroanatomical differences specifically related to ballet dancing,
since it included other professionals in its cohort. Another
study reported decrements in gray matter (GM) of several
brain regions (Hänggi et al., 2010), including both cortical and
subcortical structures, but the cohort consisted of only female
ballet dancers, whose brain and development have already been
shown to differ from that of males (Giedd et al., 1999; Good
et al., 2001). Therefore, based on previous research it was
not possible to determine which specific brain regions show
significant differences in GM when comparing professional ballet
dancers to non-dancers.

Another remaining question pertains to non-visual-
dependent spatial orientation skills, as well as balancing skills, of
ballet dancers. That is, it is unknown if these professionals have
better developed non-visual-dependent abilities to orientate in
space and balance when compared to persons not involved in
such activities. Results of our own previously published research
indicated that one-month of intensive slackline training can
lead to significant improvements in these abilities (Dordevic
et al., 2017b). The eventual findings in this respect could also
be useful for a better understanding of both healthy aging and
dementia prevention, as the decline in this ability has been linked
to the degeneration of spatial navigation centers, located in the
hippocampus and surrounding temporal brain areas (Allen et al.,
2004). Additionally, loss of balance is an important cause of
injuries, especially in old age, and it represents a major burden
for the health system (Carter et al., 2001; Kannus et al., 2005;
Sherrington et al., 2011).

Accordingly we hypothesized that: (1) brain regions, and
particularly those responsible for balance and spatial orientation
functions, of professional ballet dancers would show different
structure compared to non-dancers and (2) ballet dancers
would perform better in balancing and spatial orientation tasks,
especially those that are vestibular-dependent (in which the
vestibular input is the dominant one and thus governs the
performance).

Hence, the goal of our study was to clarify the differences
between professional ballet dancers and the normal population
with regards to brain structure, non-visual spatial orientation
abilities, and general balancing abilities.

MATERIALS AND METHODS

Ethical Approval
This study was carried out in accordance with the
recommendations of guidelines of Ethics Committee of the
Medical Faculty at the Otto von Guericke University (approval
number: 156/14) with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by
the Ethics Committee of the Medical Faculty at the Otto von
Guericke University.

Subjects
Twenty-six professional ballet dancers (18–35 years old) were
initially recruited for this study. Since seven of them were not
eligible for MRI scanning according to the safety procedures
of our department (tooth braces and similar metal implants,
tinnitus, etc.), they had to be excluded. The remaining nineteen
ballet dancers were age- and gender-matched by the control
participants (Table 1). Physical activity was assessed by asking
subjects how many hours they spend on training weekly on
average; all sports were taken into consideration, including
jogging, various team sports, cycling, etc., but not walking.
Participants of both groups were paid the same amount of
money for their participation in the study. Sample size and
characteristics, as well as the balance-training duration have been
justified by our previous studies (Dordevic et al., 2017a,b).

Eligible control subjects for this study were all those aged
from 18 to 35 years who had no previous experience in any
ballet-related similar activity (i.e., highly demanding balancing
activities, such as slacklining, rhythmic gymnastics, etc.) and had
normal or corrected to normal vision. Exclusion criteria were
injuries to the musculoskeletal system and systemic diseases (e.g.,
cardiovascular, metabolic, nervous system diseases, etc.) that
might influence their performance. Participants were recruited
through advertisement in the buildings of Otto von Guericke
University in Magdeburg.

Study Design
This study was planned and organized as a cross-sectional
one with one factor—namely group (control, ballet). The
participants of the control group were age- and gender-matched
to the participants of the ballet group. All the measurements
took place in the movement lab of the German Center for
Neurodegenerative Diseases from July 2015 to December 2016.

Behavioral Tests
Both tests have been described in our previously published work
(Dordevic et al., 2017a). In brief, clinical balance test (CBT)
consisted of standing on stable and unstable surfaces and walking
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conditions, all of which further contain sub-conditions with open
and closed eyes.

Standing conditions included:

• Two- and one-leg stance on both stable (floor) and unstable
(soft pad) surfaces, with both open and closed eyes.

Walking conditions included:

• Walking forward, backward, and turning inside a 30 cm
wide and 4 m long polygon with open eyes, followed by
the same test on a 5 cm wide line as well as on 10 cm wide
balance beam.

• Walking forward on 5 cm line with closed eyes.

In total, there are 30 assessment items within this test, 14 of
which assess standing; 16 walking; and 8 of all measurements are
performed with closed eyes. The maximum amount of points that
could be collected on the test was 90, with each condition carrying
the minimum of 0 and the maximum of 3 points. In each of the
standing conditions participants were instructed to maintain the
required position for 15 s, whereas in walking conditions there

was no time requirement and participants were asked to walk at
their own pace. For detailed list of conditions see Table 1.

For assessment of non-visual spatial orientation the triangle
completion test (TCT) was used. In brief, six triangular paths
were marked on the floor of a room, three in the left and three
in the right direction, giving thus three pairs of triangular paths,
with turning angles of 60, 90, and 120◦. The test consisted of two
conditions: active-walking and passive-wheelchair. In the active-
walking condition, while being guided on foot, the participant’s
movement was controlled by leading him or her along two
sides of the triangular path as he or she held onto a wooden
bar. The passive-wheelchair condition included transport along
the same routes with the use of a standard wheelchair with
attached footpads. Each participant was walked (active) and
pushed (passive) only once along each of the paths, giving thus
12 trials per participant in total (3 to the left and 3 to the right,
times 2 conditions). Once the participant was walked/pushed in
the wheelchair along two sides of each triangle, his or her task
was to walk along the third one, back to the starting point, using
thus the shortest possible way back; that is, the participants were
instructed not to walk back along the two sides that were used to

TABLE 1 | Test conditions of the Clinical balance test (CBT).

No. Condition Task Points (min = 0, max = 3)

0 1 2 3

1 Static–stable surface (floor) Stand with feet together–open eyes

2 Stand with feet together–closed eyes

3 One leg stance–left–open eyes

4 One leg stance–right–open eyes

5 One leg stance–left–closed eyes

6 One leg stance–right–closed eyes

7 Static–unstable surface (pad) Stand normally (hip width stance)–open eyes

8 Stand with feet together–open eyes

9 Stand normally (hip width stance)–closed eyes

10 Stand with feet together–closed eyes

11 One leg stance–left–open eyes

12 One leg stance–right–open eyes

13 One leg stance–left–closed eyes

14 One leg stance–right–closed eyes

15 Dynamic Walk inside the zone (4 m × 30 cm) Forward

16 Turn (90◦)

17 Backward

18 Walk on the line (4 m × 5 cm) Forward

19 Turn (90◦)

20 Backward

21 Walk on the line with feet one after the other (4 m × 5 cm) Forward

22 Turn (90◦)

23 Backward

24 Walk on the beam (4 m × 10 cm) Forward

25 Turn (90◦)

26 Backward

27 Walk on the beam sideways (4 m × 10 cm) Rightward

28 Turn (90◦)

29 Leftward

30 Walk on the line with closed eyes (4 m × 5 cm) Forward
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bring them to the drop-off point, but to use the shortest possible
way back to the starting point instead, which is actually always
the third side of the respective triangle. The first main outcome
variables were the distance error on each trial, which was assessed
by marking the participant’s stopping point with adhesive dots
on the floor and later measuring the distance from that stopping
point to the starting point, from which the respective movement
was initiated. The second outcome variable was angular error,
which was estimated as the angular deviation from the optimal
direction (that would take directly to the start point). For the
whole duration of the test participants were blindfolded in a quiet
room and thereby could not use any visual or auditory cues that
might help them in finding their way back to the starting point.
It can thus be assumed that the only cues they could use were
somatosensory and vestibular in the active-walking condition
and vestibular only in the passive-wheelchair condition.

MRI
MR images were acquired on a 3 Tesla Siemens MAGNETOM
Verio scanner (Syngo MR B17) using a 32-channel head
coil. High-resolution T1-weighted MPRAGE sequences
were acquired using a 3D magnetization-prepared rapid
gradient echo imaging protocol (224 sagittal slices, voxel size:
0.8 mm × 0.8 mm × 0.8 mm, TR: 2,500 ms, TE: 3.47 ms, TI:
1,100 ms, and flip angle: 7◦).

Voxel-based morphometry (VBM) is a whole-brain unbiased
technique for analysis of regional GM volume and tissue changes
(Ashburner and Friston, 2000). Preprocessing involved gray-
matter segmentation, template creation via DARTEL, spatial
normalization to standardized Montreal Neurological Institute
(MNI) space and smoothing with an Gaussian kernel of 8 mm
full width at half maximum (FWHM).

Outcome Variables and Data Analysis
The outcome variable for the neuroanatomical analysis was the
structural difference in brain neuroanatomy as observed by VBM.
In order to analyze the difference in GM volume changes between
groups, an independent t-test with the factor group (ballet,
control) was applied. Since the whole-brain between-group
comparison was carried out, multiple comparison correction
was also performed in the form of Family-wise-error (FWE)
correction, where the results were considered significant at
p < 0.05, unless otherwise specified (uncorrected p < 0.001).
Data were analyzed with MatLab (Mathworks, United States) and
SPM12 (UCL, Great Britain). The results of the VBM analyses are
visualized using the xjView toolbox1.

Analysis of the behavioral data was performed with SPSS v.21
(IBM, United States), with the group (control, ballet) as factor.
Independent t-test was run after checking for assumptions of
normality and homogeneity of variance. If the assumptions were
not met, the non-parametric equivalent (Mann–Whitney U-test)
was applied.

In tables and figures the respective means with 95% confidence
intervals of the difference are presented. In addition the effect
sizes are calculated and listed.

1http://www.alivelearn.net/xjview

RESULTS

The final analysis included 19 participants in each group. All
subjects were recruited from July 2015 to December 2016 and
their characteristics are shown in Table 2. The participants of
the two groups did significantly differ in weight (p = 0.02) and
amount of training hours per week (p < 0.001), whereas in other
characteristics there was no significant difference.

Behavioral Tests
As illustrated in the Figure 1, the ballet dancers performed
significantly better on the CBT, which was true for all sub-
conditions of the test except for the simplest task which involved
standing on stable flat surface. In the Table 3 are listed the mean
values for the two groups as well as the effect sizes and confidence
intervals of the difference between the two groups. The effect
size was large to very large for all comparisons, including the
condition where no significant difference was observed.

The Figure 2 illustrates the difference between the two
groups on the TCT. The results demonstrated that ballet dancers
performed significantly better on this test, by having smaller error
in both distance and angle, which was mainly attributable to their
better performance on the wheelchair (vestibular) condition.
The results in the Table 3 depict medium effect sizes for this
condition.

VBM Analysis
For the ballet group, the VBM analysis revealed significantly
larger cluster-based FWE-corrected gray matter volumes within
the inferior and posterior areas of the right cerebellar hemisphere,
right parahippocampus, right cingulate motor cortex, and right
insula (Figure 3). Additional tendencies at uncorrected level
(p < 0.001) could be observed in the vermis, right posterior
hippocampus, and right posterior thalamus. The respective MNI
coordinates as well as the cluster sizes are listed in the Table 4.

The control group participants also had significantly larger
volume (FWE-corrected at cluster and voxel levels) within the
cerebellum when compared to the ballet group, which was located
within the right anterior lobe (Figure 4). A small tendency could
also be observed at a similar location within the left cerebellar

TABLE 2 | Characteristics of participants.

Characteristic Training (n = 19) Control (n = 19)

Age (years) 27.5 ± 4.1 26.5 ± 2.1

Age when training
begun (min–max)

8.0 ± 3.8 (3–16) –

Sex (females) 10 (53%) 10 (53%)

Weight (kg) 59.4 ± 11.6 67.9 ± 10.4

Height (cm) 169.3 ± 10.1 172.5 ± 8.4

Hours of activity–per
week

33.4 ± 13.5 3.3 ± 1.6

Handedness–right 18 (95%) 19 (100%)

Ethnic origin
• European
• Asian (Indian)
• Asian (Japanese)

16 (84%)
0 (0%)
3 (16%)

17 (90%)
2 (10%)
0 (0%)
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FIGURE 1 | Comparison of ballet and control groups on all conditions of the clinical balance test (CBT).

TABLE 3 | Comparison of ballet and control groups on all conditions of the clinical balance test (CBT).

Test (assessment scale) Condition Mean 95% CI of the difference Effect size (d)

Ballet Control

CBT (points) Total 80.1 72.0 5.3 to 10.9 1.89

Eyes open 64.4 57.9 4.3 to 8.6 1.98

Eyes closed 15.7 14.1 0.1 to 3.1 0.70

Standing-stable 16.2 15.1 −0.2 to 2.3 0.56

Walking 45.7 41.1 2.5 to 6.8 1.43

Standing-unstable 18.2 15.8 1.6 to 3.2 1.94

TCT (degrees) Total 15.7 20.9 −8.2 to −2.1 0.22

Walk 14.9 18.4 −7.7 to 0.5 0.08

Wheelchair 16.6 23.3 −11.2 to −2.2 0.37

TCT (centimeters) Total 106.9 122.5 −28.8 to 2.5 0.31

Walk 103.2 108.9 −24.3 to 13.1 0.23

Wheelchair 110.5 136.1 −44.0 to −7.4 0.39

hemisphere. The respective MNI coordinates and sizes of these
clusters are also presented in the Table 4.

DISCUSSION

The results of our study confirm both of our a priori hypotheses.
That is, ballet dancers do have larger GM volumes in regions that
contribute to balance and spatial orientation abilities, such as the
posterior cerebellum and the vermis, insula, and hippocampal
and parahippocampal regions, when compared to non-dancers;
effects in the opposite direction, i.e., smaller GM volumes, were
found in the cerebellar anterior lobes. On a behavioral level, in
comparison with non-dancers, they demonstrated an increased

ability to maintain balance in all conditions, as well as to orientate
in space with closed eyes, especially in the mere vestibular-
dependent condition, in which the blindfolded subjects did not
walk themselves but were pushed in a wheelchair.

To date, to the best of our knowledge, there has been only
one similar study on structural brain alterations in professional
ballet dancers, however, this study only investigated females, and
did not assess their spatial orientation and general balancing
abilities, which prevents us from effectively comparing these
with our findings. In the named study, Hänggi and colleagues
(Hänggi et al., 2010) did not report any GM increments in ballet
dancers compared to non-dancers. Instead they observed smaller
volumes in several areas, including the supplementary motor and
premotor areas and the putamen, all of which were located in the
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FIGURE 2 | Comparison of ballet and control groups on both conditions of the triangle completion task (TCT).

FIGURE 3 | VBM observed GM increments in the ballet group compared to the control group. ∗FWE-corrected at the cluster level.

left hemisphere. This is in contrast to our findings, both regarding
the localization and the direction of the effects. That is, apart
from smaller GM volumes in the right and left cerebellar anterior
lobes, we observed increments in the right posterior cerebellar
hemisphere, vermis, right hippocampal and parahippocampal
areas, and right posterior thalamus. This dissimilarity could be

perhaps attributed to some of the cohort or methodological
differences, including the sample, which in our case consisted
of both genders, together with a higher mean age and the
duration of professional activity of participants, as well as the
VBM analysis procedure. For instance, the cerebellum and the
pons are larger in men than in women and the difference is
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TABLE 4 | MNI coordinates of VBM-detected gray matter changes in the ballet group as compared to the control group.

Brain region Location Direction of difference MNI coordinates (x, y, and z) Cluster size (in voxels)

Temporal Right hippocampus Larger 30, −26, −6 128

Right parahippocampal gyrus Larger 21, −32, −20 2,013

Temporo-parietal Right insula Larger 38, 24, 3 1,020

27, 21, 2

Cingulate cortex Right hemisphere Larger 6, 17, 24 800

15, 17, 36

Cerebellum Right hemisphere Larger 32, −68, −59 3,897

Vermis Larger 2, −68, −47 283

Right hemisphere Smaller 12, −65, −29 460

Left hemisphere Smaller −12, −63, −29 30

FIGURE 4 | VBM observed GM decrements in the ballet group compared to
the control group. ∗FWE corrected.

especially pronounced in the cerebellar hemispheres and the
anterior vermis (Raz et al., 2001). Additionally, it has been shown
not only that GM demonstrates a non-linear change during pre-
and post-adolescence, but also that these developmental curves
are not the same for all brain regions, with frontal lobe and
parietal lobes peaking at the age of 12, the temporal at the age
of 16, and the occipital only at the age of 20 (Giedd et al., 1999).
Thus, the large discrepancies between the two studies may call for
an additional study with a larger cohort so the structural brain
differences between professional ballet dancers and non-dancers
could be better delineated.

In an earlier study, we were able to detect some tendencies
toward posterior hippocampal changes in a group of young
healthy adults that had learned to slackline (Dordevic et al.,
submitted). The temporal dynamics of these brain changes partly
resembled the balancing and spatial orientation skill levels of
the participants which also showed a transient improvement.
Increments in the posterior hippocampus have also been reported
previously in ballet dancers by Hüffner and colleagues (Hüfner
et al., 2011). Posterior hippocampal structural changes were
also observed after year-long experience in taxi-driving and
several sports with very high balancing demands, such as
ballet dance, ice-skating, and slacklining (Maguire et al., 2000;
Hüfner et al., 2011). Our sample of ballet dancers revealed
similar results, indicating that long-term training might be
necessary for structural changes in posterior hippocampus to
persist. We could also demonstrate significant differences in the
parahippocampal region between the ballet dancers and non-
dancers. These were mainly located in the entorhinal cortex,

particularly the medial entorhinal cortex. The entorhinal cortex
is an interface between the three-layered hippocampal cortex and
the six-layered neocortex and it provides the main cortical input
to the hippocampus, with many reciprocal connections. More
recently, an investigation of the medial entorhinal cortex (MEC)
in animals, led to the discovery of grid cells that fire when the
animal is in any of multiple locations that form a triangular grid
(Moser et al., 2008, 2014; Sanders et al., 2015). Here the change
in position can be computed based on vestibular information,
sensorimotor information about self-motion, and optic flow. In
our study on healthy older adults an increase in GM within
parahippocampal regions was observed following an 18-month
dance intervention (Müller et al., 2017). It is thus plausible to
speculate that the better performance of ballet dancers in the TCT
relies on these particular biological mechanisms, as well as that
their long-term utilization causes neuroanatomical alterations
which we were able to detect with VBM.

We observed highly significant differences in the caudal part
of the cingulate cortex, area 24 of Broadman’s classification.
It is known from functional MRI studies that the cingulate
motor cortex and the cerebellum are active during interlimb
coordinative movements, together with primary and associative
sensory and motor regions of the cortex (Debaere et al., 2001).
Somatotopy similar to that of the larger sensory-motor cortices
can be found in those cingulate cortex regions where the changes
were detected (Vogt and Pandya, 1987; Vogt et al., 1992; Paus
et al., 1993; Petit et al., 1993; Wu et al., 2000). Since such
coordinative movements are a core element of ballet dancing, the
finding of a larger volume of this brain region in dancers makes
perfectly sense.

The changes we detected in the cerebellum were mainly
in the expected direction, considering its close relationship
with movement control and learning. Once learned, the skilled
movements remain coded in the cerebellar memory cells for
a long time. The cerebellum then provides speed, complexity,
variety, stereotypy, and automaticity of the motor response so
that one does not have to think consciously about the movement.
It has been suggested that the learned programs are stored within
the cerebellar cortex and that the memory capacity for storage
is proportionate to the number of granule cells (Thach, 1998;
Boyden et al., 2004). Our study revealed a major GM expansion
in the superficial layers of the cerebellum, which could be perhaps
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due to the increment in the capacity to store complex movement-
related memories in ballet dancers. On the other hand, we
observed significantly smaller GM volumes in slightly deeper
cerebellar structures of the ballet dancers, parts that are known
to be involved in the control of limb movements, which can be
interpreted in terms of automaticity/stereotypy.

One earlier study on ballet dancers has shown that the right
hemispheric visual dominance is particularly useful for postural
control in complex equilibrium conditions (Golomer et al., 2010).
In our study, we could also observe differences that were mainly
localized on the right side of the brain.

Main between-group differences in the thalamus were
observed for its posterior part, and only on the right side.
Earlier studies have proposed a functional importance of the
posterolateral thalamus as a unique relay station for vestibular
input to the cortex, but also the dominance of the right
hemisphere in right-handedness, and of ipsilateral ascending
pathways (Dieterich et al., 2005). Multiple thalamic nuclei are
involved in vestibular processing, as well as somatosensory and
visual, and this may explain the enlarged thalamus in the dancers
(Morel et al., 1997; Lopez and Blanke, 2011).

Possible neurobiological mechanisms of the observed GM
differences could be neurogenesis, synaptogenesis, hypertrophy
of glia cells, and angiogenesis (Zatorre et al., 2012). The
generation of new cells within the confines of our findings can
only be expected for the hippocampus, but not for other areas
of the ballet dancers’ brain (Bhardwaj et al., 2006). Hippocampal
neurogenesis in the adult has also been undermined somewhat by
a recent publication (Sorrells et al., 2018). Instead, the observed
GM increments are presumably based on the sensory experience
which drives the formation and elimination of synapses and these
changes might underlie adaptive remodeling of neural circuits
(Trachtenberg et al., 2002). Importantly, animal studies have
reported that motor learning of complex and acrobatic skills, and
not repetitive use of synapses during simple physical exercise,
generates new synapses in the cerebellar cortex (Black et al.,
1990). In contrast, simple exercise leads to a greater density of
blood vessels in the cerebellum.

The main limitation of our study is its cross-sectional nature,
whereby no causal relationship for the effects observed can
be established. Previous studies have, however, shown that
training-induced neuroplastic adaptations are actually sport-
specific rather than just sport-general. For instance, GM volumes
in the hand representations are increased in handball players
compared with ballet dancers, whereas GM volumes in the
foot representations are increased in ballet dancers compared
with handball players (Meier et al., 2016). Similarly, differences
were observed between martial artists and endurance athletes
(Schlaffke et al., 2014), but also musicians and non-musicians

(Gaser and Schlaug, 2003), world class gymnasts (Huang et al.,
2015), golfers with various skill levels and non-golfers (Jäncke
et al., 2009), and sprinters and endurance runners (Wenzel
et al., 2014), who differ in GM volumes of the anterior
cerebellar lobe, and in vermian lobules compared to basketball
players (Park et al., 2009). Considering the cross-sectional
nature of these studies, some of these multiregional differences
may be attributable to innate predisposition. Additionally, GM
alterations in the cortex can occur as early as after 7 days of
training (Driemeyer et al., 2008), and the temporal dynamics
of the structural changes may lead to a partial or complete loss
of these effects (May and Gaser, 2006; Taubert et al., 2010).
Nevertheless, many researchers believe the neuroanatomical
effects found in professional athletes may represent structural
adaptations in response to long-term skill acquisition and the
repetitive rehearsal of those skills. Some studies have shown that
visual input is of a great importance for ballet dancers (Hugel
et al., 1999; Perrin et al., 2002; Golomer et al., 2009), in order to
successfully maintain balance and perform complex movements;
however, we could not find any structural differences in visual
cortex.

CONCLUSION

Our study demonstrated significant differences between
professional ballet dancers and non-dancers in their
neuroanatomy as well as in their abilities pertained to balancing
and non-visual wayfinding. Some anticipated brain regions
revealed structural alterations in professional ballet dancers,
such as the cerebellum, the cingulate motor cortex, the
posterior thalamus, as well as the posterior hippocampus
and parahippocampus. In accordance with these structural
observations, the dancers were able to better maintain balance,
both in static and dynamic conditions, and to more accurately
complete the triangular path both in the walking (somatosensory
and vestibular) and particularly in the wheelchair (vestibular
only) condition. We conclude that intensive life-long ballet
training is presumably the main cause for the differences detected
in our study.
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