1,058 research outputs found

    Nanostructured luminescently labeled nucleic acids

    Get PDF
    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods

    Interannual variability of the onset of the South China Sea summer monsoon

    Get PDF
    This article investigates the year-to-year variability of the onset of the South China Sea summer monsoon (SCSSM) and the possible influences exerted by the surface temperature anomalies over land and sea. Early and late monsoon onsets are related to the temperature anomalies in different regions. It is found that an early onset follows negative sea surface temperature (SST) anomalies in the central tropical Pacific (CP) Ocean during the preceding winter and spring, corresponding to a CP La Niña. In contrast, a late onset is preceded by the negative surface air temperature anomalies over land in the central Asian continent. Negative SST anomalies in the central-eastern equatorial Pacific Ocean and the associated warming in the western Pacific induce an anomalously enhanced Walker circulation. This anomalous Walker cell leads to an increase in convection, causing more latent heat release and a subsequent decrease of surface pressure. The anomalous Walker cell and the enhanced latent heat release weaken the Western North Pacific subtropical high and the Philippine Sea anticyclone, favouring a westerly flow from the Indian Ocean, resulting in an early SCSSM onset. On the other hand, negative land surface temperature anomalies cool the atmosphere over land, and locally modify the Hadley circulation, accompanied by the anomalous divergence in the low-level atmosphere over the western equatorial Pacific. This divergence anomaly reduces the latent heat release and strengthens the anticyclone in the Philippine Sea, thus preventing the westward extension of the westerlies from the Indian Ocean and causing a late SCSSM onset.This research was jointly supported by the Geographical Modeling and Geocomputation Program under the Focused Investment Scheme of The Chinese University of Hong Kong, the National Basic Research Program (973 Program) of China (No. 2012CB955800), and the National Natural Science Foundation of China (No. 41401052).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/joc.436

    Dispersive resonance bands within the space charge layer of metal- semiconductor junction

    Full text link
    Based on measurements of angle resolved photoemission, we report that in the Pb/Ge(111)- \sqrt{3}x\sqrt{3} R30^\circ structure, in addition to three bands resembling Ge heavy hole (HH), light hole (LH), and split off (SO) bulk band edges, a fourth dispersive band resembling the non split off (NSO) band is found near the surface zone center. While three Ge bulk-like bands get distorted due to strong coupling between Pb and Ge, the NSO-like band gets weaker and disappears for larger thickness of Pb, which, when combined with ab initio calculations, indicates its localized nature within space charge layer. Our results are clearly important for designing electronics involved with metal-semiconductor contacts.Comment: 21 pages, 4 figures, Phys. Rev. B 81, 245406 (2010

    Associations Between Hepatitis B Virus Genotype and Mutants and the Risk of Hepatocellular Carcinoma

    Get PDF
    Background The risk of hepatocellular carcinoma (HCC) increases with increasing level of hepatitis B virus (HBV) in serum (viral load). However , it is unclear whether genetic characteristics of HBV, including HBV genotype and specific genetic mutations, contribute to the risk of HCC. We examined the HCC risk associated with HBV genotypes and common variants in the precore and basal core promoter (BCP) regions. Methods From January 5, 1991, to December 21, 1992 , baseline blood samples were collected from 2762 Taiwanese men and women who were seropositive for HBV surface antigen but had not been diagnosed with HCC; the samples were tested for HBV viral load by real-time polymerase chain reaction and genotyped by melting curve analysis. Participants who had a baseline serum HBV DNA level greater than 101 copies/ mL (n = 1526) were tested for the precore G 1896A and BCP A 1762T/G1764A mutants by direct sequencing. Incident cases of HCC were ascertained through follow-up examinations and computerized linkage to the National Cancer Registry and death certification profiles. A Cox proportional hazards model was used to estimate the risk of HCC associated with HBV genotype and precore and BCP mutants after adjustment for other risk factors. All statistical tests were two-sided . Results A total of 153 HCC cases occurred during 33847 person-years of follow-up. The HCC incidence rates per 100000 person-years for participants infected with HBV genotype B or C were 305.6 (95% confidence interval [CI] = 236.9 to 388.1) and 785.8 (95% CI = 626.8 to 972.9), respectively. Among participants with a baseline HBV DNA level of at least 10(4) copies/mL, HCC incidence per 100000 person-years was higher for those with the precore G1896 ( wild-type) variant than for those with the G1896A variant ( 955.5 [95% CI = 749.0 to 1201.4] vs 269.4 [95% CI = 172.6 to 400.9]) and for those with the BCP A1762T/G1764A double mutant than for those with BCP A1762/G1764 (wild-type) variant (1149.2 [95% CI = 872.6 to 1485.6] vs 358.7 [95% Cl = 255.1 to 490.4]). The multivariable-adjusted hazard ratio of developing HCC was 1.76 (95% CI = 1.19 to 2.61) for genotype C vs genotype B, 0.34 (95% CI = 0.21 to 0.57) for precore G1896A vs wild type, and 1.73 (95% CI = 1.13 to 2.67 ) for BCP A1762T/G1764A vs wild type. Risk was highest among participants infected with genotype C HBV and wild type for the precore 1896 variant and mutant for the BCP 1762/1764 variant ( adjusted hazard ratio = 2.99, 95% CI = 1.57 to 5.70 , P<.001). Conclusions HBV genotype C and specific alleles of BCP and precore were associated with risk of HCC. These associations were independent of serum HBV DNA level

    Alkynyl Thioethers in Gold-Catalyzed Annulations to form Oxazoles

    Get PDF
    Non-oxidative, regioselective, and convergent access to densely functionalized oxazoles is realized in a functional-group tolerant manner using alkynyl thioethers. Sulfur-terminated alkynes provide access to reactivity previously requiring strong donor-substituted alkynes such as ynamides. Sulfur does not act in an analogous donor fashion in this gold-catalyzed reaction, thus leading to complementary regioselective outcomes and addressing the limitations of using ynamides

    Gradient Optics of subwavelength nanofilms

    Get PDF
    Propagation and tunneling of light through subwavelength photonic barriers, formed by dielectric layers with continuous spatial variations of dielectric susceptibility across the film are considered. Effects of giant heterogeneity-induced non-local dispersion, both normal and anomalous, are examined by means of a series of exact analytical solutions of Maxwell equations for gradient media. Generalized Fresnel formulae, visualizing a profound influence of gradient and curvature of dielectric susceptibility profiles on reflectance/transmittance of periodical photonic heterostructures are presented. Depending on the cutoff frequency of the barrier, governed by technologically managed spatial profile of its refractive index, propagation or tunneling of light through these barriers are examined. Nonattenuative transfer of EM energy by evanescent waves, tunneling through dielectric gradient barriers, characterized by real values of refractive index, decreasing in the depth of medium, is shown. Scaling of the obtained results for different spectral ranges of visible, IR and THz waves is illustrated. Potential of gradient optical structures for design of miniaturized filters, polarizers and frequency-selective interfaces of subwavelength thickness is considered

    Selecting green suppliers based on GSCM practices: Using Fuzzy TOPSIS applied to a Brazilian electronics company

    Get PDF
    Due to an increased awareness and significant environmental pressures from various stakeholders, companies have begun to realize the significance of incorporating green practices into their daily activities. This paper proposes a framework using Fuzzy TOPSIS to select green suppliers for a Brazilian electronics company; our framework is built on the criteria of green supply chain management (GSCM) practices. An empirical analysis is made, and the data are collected from a set of 12 available suppliers. We use a fuzzy TOPSIS approach to rank the suppliers, and the results of the proposed framework are compared with the ranks obtained by both the geometric mean and the graded mean methods of fuzzy TOPSIS methodology. Then a Spearman rank correlation coefficient is used to find the statistical difference between the ranks obtained by the three methods. Finally, a sensitivity analysis has been performed to examine the influence of the preferences given by the decision makers for the chosen GSCM practices on the selection of green suppliers. Results indicate that the four dominant criteria are Commitment of senior management to GSCM; Product designs that reduce, reuse, recycle, or reclaim materials, components, or energy; Compliance with legal environmental requirements and auditing programs; and Product designs that avoid or reduce toxic or hazardous material use. © 2013 Elsevier B.V. All rights reserved

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio
    corecore