6 research outputs found

    A lived experience co-designed study protocol for a randomised control trial: the Attempted Suicide Short Intervention Program (ASSIP) or Brief Cognitive Behavioural Therapy as additional interventions after a suicide attempt compared to a standard Suicide Prevention Pathway (SPP)

    Get PDF
    BACKGROUND: Despite being preventable, suicide is a leading cause of death and a major global public health problem. For every death by suicide, many more suicide attempts are undertaken, and this presents as a critical risk factor for suicide. Currently, there are limited treatment options with limited underpinning research for those who present to emergency departments with suicidal behaviour. The aim of this study is to assess if adding one of two structured suicide-specific psychological interventions (Attempted Suicide Short Intervention Program [ASSIP] or Brief Cognitive Behavioural Therapy [CBT] for Suicide Prevention) to a standardised clinical care approach (Suicide Prevention Pathway [SPP]) improves the outcomes for consumers presenting to a Mental Health Service with a suicide attempt. METHODS: This is a randomised controlled trial with blinding of those assessing the outcomes. People who attempt suicide or experience suicidality after a suicide attempt, present to the Gold Coast Mental Health and Specialist Services, are placed on the Suicide Prevention Pathway (SPP), and meet the eligibility criteria, are offered the opportunity to participate. A total of 411 participants will be recruited for the study, with 137 allocated to each cohort (participants are randomised to SPP, ASSIP + SPP, or CBT + SPP). The primary outcomes of this study are re-presentation to hospitals with suicide attempts. Presentations with suicidal ideation will also be examined (in a descriptive analysis) to ascertain whether a rise in suicidal ideation is commensurate with a fall in suicide attempts (which might indicate an increase in help-seeking behaviours). Death by suicide rates will also be examined to ensure that representations with a suicide attempt are not due to participants dying, but due to a potential improvement in mental health. For participants without a subsequent suicide attempt, the total number of days from enrolment to the last assessment (24 months) will be calculated. Self-reported levels of suicidality, depression, anxiety, stress, resilience, problem-solving skills, and self- and therapist-reported level of therapeutic engagement are also being examined. Psychometric data are collected at baseline, end of interventions, and 6,12, and 24 months. DISCUSSION: This project will move both ASSIP and Brief CBT from efficacy to effectiveness research, with clear aims of assessing the addition of two structured psychological interventions to treatment as usual, providing a cost-benefit analysis of the interventions, thus delivering outcomes providing a clear pathway for rapid translation of successful interventions. TRIALS REGISTRATION: ClinicalTrials.govNCT04072666. Registered on 28 August 201

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    No full text
    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna’s frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient (S 11 ) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2h Mpc − 1 . We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1h Mpc − 1 . This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018) : a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore