2,792 research outputs found

    Metalâ Chelated Polymer Nanodiscs for NMR Studies

    Full text link
    Paramagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T1) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styreneâ coâ maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions. Cu2+â chelated nanodiscs are demonstrated to reduce the T1 of protons for both polymer and lipidâ nanodisc components. The chelated nanodiscs also decrease the proton T1 values for a waterâ soluble DNA Gâ quadruplex. These results suggest that polymer nanodiscs functionalized with paramagnetic tags can be used to speedâ up data acquisition from lipid bilayer samples and also to provide structural information from waterâ soluble biomolecules.Speeding up data acquisition: Design of a polymer nanodisc containing a DOTA chelator enables the utilization of the PRE effect in studies using lipid nanodiscs. This new technique can be applied to waterâ soluble biomolecules such as Gâ quadruplexes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/1/anie201910118.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/2/anie201910118-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/3/anie201910118_am.pd

    Metalâ Chelated Polymer Nanodiscs for NMR Studies

    Full text link
    Paramagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T1) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styreneâ coâ maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions. Cu2+â chelated nanodiscs are demonstrated to reduce the T1 of protons for both polymer and lipidâ nanodisc components. The chelated nanodiscs also decrease the proton T1 values for a waterâ soluble DNA Gâ quadruplex. These results suggest that polymer nanodiscs functionalized with paramagnetic tags can be used to speedâ up data acquisition from lipid bilayer samples and also to provide structural information from waterâ soluble biomolecules.Speeding up data acquisition: Design of a polymer nanodisc containing a DOTA chelator enables the utilization of the PRE effect in studies using lipid nanodiscs. This new technique can be applied to waterâ soluble biomolecules such as Gâ quadruplexes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/1/anie201910118.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/2/anie201910118-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152508/3/anie201910118_am.pd

    Notulae to the Italian alien vascular flora 6

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions of taxa in the genera Acalypha, Acer, Canna, Cardamine, Cedrus, Chlorophytum, Citrus, Cyperus, Epilobium, Eucalyptus, Euphorbia, Gamochaeta, Hesperocyparis, Heteranthera, Lemna, Ligustrum, Lycium, Nassella, Nothoscordum, Oenothera, Osteospermum, Paspalum, Pontederia, Romulea, Rudbeckia, Salvia, Sesbania, Setaria, Sicyos, Styphnolobium, Symphyotrichum, and Tradescantia. Nomenclature and distribution updates, published elsewhere, and corrigenda are provided as supplementary material

    FOOT: a new experiment to measure nuclear fragmentation at intermediate energies

    Get PDF
    Summary: Charged particle therapy exploits proton or 12C beams to treat deep-seated solid tumors. Due to the advantageous characteristics of charged particles energy deposition in matter, the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. However, the beam nuclear interactions with the patient tissues induces fragmentation both of projectile and target nuclei and needs to be carefully taken into account. In proton treatments, target fragmentation produces low energy, short range fragments along all the beam range, which deposit a non negligible dose in the entry channel. In 12C treatments the main concern is represented by long range fragments due to beam fragmentation that release their dose in the healthy tissues beyond the tumor. The FOOT experiment (FragmentatiOn Of Target) of INFN is designed to study these processes, in order to improve the nuclear fragmentation description in next generation Treatment Planning Systems and the treatment plans quality. Target (16O and 12C nuclei) fragmentation induced by –proton beams at therapeutic energies will be studied via an inverse kinematic approach, where 16O and 12C therapeutic beams impinge on graphite and hydrocarbon targets to provide the nuclear fragmentation cross section on hydrogen. Projectile fragmentation of 16O and 12C beams will be explored as well. The FOOT detector includes a magnetic spectrometer for the fragments momentum measurement, a plastic scintillator for ΔE and time of flight measurements and a crystal calorimeter to measure the fragments kinetic energy. These measurements will be combined in order to make an accurate fragment charge and isotopic identification. Keywords: Hadrontherapy, Nuclear fragmentation cross sections, Tracking detectors, Scintillating detector

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ο\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΟΟ\mu\mu or eΟe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2¹3.912.2 \pm 3.9 events and 2.5¹0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
    • …
    corecore