58 research outputs found

    Optimising the length of doped polymer light mixers

    Full text link
    Transparent Refractive Index Matched Micro-particles (TRIMM) in polymer rods are highly efficient light mixers. This paper addressess the problem of estimating the optimum length fr the mixing rods, for a given TRIMM-to-matrix refractive index ratio and concentration. Light mixing can be this maximised and loss minimised, without computer ray tracing simulations. The probability density function and mean angle for a single TRIMM sphere ray deviation are derived and used in modelling an expression for a critical mixer length for rays of normal incidence. Similar models could be very useful design tools with further development

    Uniform white light distribution with low loss from coloured LEDs using polymer doped polymer mixing rods

    Full text link
    Colour mixing of red, green and blue (RGB) LEDs is demonstrated for a 6 cm long PMMA cylindrical rod with a transparent refractive index matched micro particle (TRIMM) diffuser sheet at the output end. Ray tracing simulations have been performed, and the output light distributions, transmittances and losses modelled and compared with experiment. Photographed and modelled colour mixing results are presented for rods with and without TRIMM sheet mixers. The TRIMM particles homogenize the light output of plain PMMA rods to form white light, with negligible backscattering. A simple method for measuring the concentration of the particles in the diffuser sheet is described, and computer modeling and analysis of TRIMM particle systems is discussed

    Exciting positronium with a solid-state UV laser: the Doppler-broadened Lyman-alpha transition

    Get PDF
    A tunable, pulsed laser was used to excite the Lyman-α transition (1S–2P) of positronium (Ps). The laser system has a large bandwidth of Δν=225\Delta \nu =225 GHz at λ=243\lambda =243 nm, providing significant coverage of the Doppler-broadened, single-photon transition. The infra-red fundamental of a Nd:YAG laser was converted to ultraviolet by a series of solid-state, nonlinear processes, centred about an unseeded optical parametric oscillator, from which the bulk of the ultimate bandwidth derives. The Ps atoms were created by bombarding mesoporous silica with positrons, and the Doppler-width of the 1S–2P transition of the resulting ensemble was measured to be Δν=672±43\Delta \nu =672\pm 43 GHz (equivalent to T300T\approx 300 K). It is envisaged that the UV laser will be incorporated into a two-step process to efficiently form Rydberg states of Ps, with potential applications in synthesis of cold antihydrogen, gravity measurements with antimatter, or for injection of electrons and positrons into a stellarator

    Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    Get PDF
    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro

    The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

    Get PDF
    The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific

    Hippocampal pyramidal cells: the reemergence of cortical lamination

    Get PDF
    The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Monte Carlo ray-tracing in particle-doped light guides

    Full text link
    A general Monte Carlo ray-tracing method for light guides with particles randomly dispersed in a matrix material is presented. Previous ray-tracing approaches have been designed for undoped cylindrical light guides, where a propagating ray is deviated by total internal reflection only. These geometrical principles are extended and further developed into a method of ray-tracing suitable for particle-doped systems. Redefining ray direction after deviation by a particle, obtaining ray/ wall intercept points and angles, and calculation of ray reflection angles from a cylindrical surface are described. Simulations of light from a source LED traced through TRIMM-doped (Transparent Refractive Index Matched Micro-Particle) polymethyl methacrylate (PMMA) light guides have been performed. Distributions of the light exiting the walls of two concentrations of TRIMM-doped light guides are given, as an example of an application of the described ray-tracing method

    Monte Carlo ray-tracing in particle-doped light guides

    No full text
    corecore