42 research outputs found
Introduction to Special Section: The Quest for Sustainability of Heavily Stressed Aquifers at Regional to Global Scales
This is the peer reviewed version of the following article: Butler, J. J., Gomez-Hernandez, J. J., Perrone, D., & Hyndman, D. (2021). Introduction to special section: The quest for sustainability of heavily stressed aquifers at regional to global scales. Water Resources Research, 57, e2021WR030446, which has been published in final form at https://doi.org/10.1029/2021WR030446. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The authors acknowledge financial support from the United States National Science Foundation (NSF), via grant EAR 1542320, to organize the Chapman meeting. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.Butler Jr., JJ.; GĂłmez-HernĂĄndez, JJ.; Perrone, D.; Hyndman, DW. (2021). Introduction to Special Section: The Quest for Sustainability of Heavily Stressed Aquifers at Regional to Global Scales. Water Resources Research. 57(8):1-4. https://doi.org/10.1029/2021WR030446S1457
Baseline characteristics of patients in the reduction of events with darbepoetin alfa in heart failure trial (RED-HF)
<p>Aims: This report describes the baseline characteristics of patients in the Reduction of Events with Darbepoetin alfa in Heart Failure trial (RED-HF) which is testing the hypothesis that anaemia correction with darbepoetin alfa will reduce the composite endpoint of death from any cause or hospital admission for worsening heart failure, and improve other outcomes.</p>
<p>Methods and results: Key demographic, clinical, and laboratory findings, along with baseline treatment, are reported and compared with those of patients in other recent clinical trials in heart failure. Compared with other recent trials, RED-HF enrolled more elderly [mean age 70 (SD 11.4) years], female (41%), and black (9%) patients. RED-HF patients more often had diabetes (46%) and renal impairment (72% had an estimated glomerular filtration rate <60 mL/min/1.73 m2). Patients in RED-HF had heart failure of longer duration [5.3 (5.4) years], worse NYHA class (35% II, 63% III, and 2% IV), and more signs of congestion. Mean EF was 30% (6.8%). RED-HF patients were well treated at randomization, and pharmacological therapy at baseline was broadly similar to that of other recent trials, taking account of study-specific inclusion/exclusion criteria. Median (interquartile range) haemoglobin at baseline was 112 (106â117) g/L.</p>
<p>Conclusion: The anaemic patients enrolled in RED-HF were older, moderately to markedly symptomatic, and had extensive co-morbidity.</p>
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Recommended from our members
California's Central Valley Groundwater Wells Run Dry During Recent Drought
Frontiers of the foodâenergyâwater trilemma: Sri Lanka as a microcosm of tradeoffs
Food, energy, and water are three critical resources for humanity. As climate variability, population growth, and lifestyle changes amplify the stress placed on each of the resources, the interrelationships among food, energy, and water systems become more pronounced. Political conflict, social and cultural norms, and spatial and temporal distribution of the resources add additional layers of complexity. It is in this context that the significance of understanding the impacts of water scarcity on the decisions around food and energy productions has emerged. Our work establishes tradeoff frontiers (TFs) as a method useful in illustrating the system-level tradeoffs between allocating water for food and water for energy. This paper illustrates how TFs can be used to (1) show how scarcity in water resources affects the tradeoffs between food and energy and (2) explore the political and social constraints that can move production away from what is feasible technically. We use Sri Lanka, a country where water resources are variable both in space and time and a country with relatively self-contained energy and agricultural sectors, as a microcosm of the food security, energy security, and water security trilemma. Nevertheless, our application of tradeoff frontiers is applicable widely to other systems
Recommended from our members
Benefits and Economic Costs of Managed Aquifer Recharge in California
Groundwater management is important and challenging, and nowhere is this more evident than in California. Managed aquifer recharge (MAR) projects can play an important role in ensuring California manages its groundwater sustainably. Although the benefits and economic costs of surface water storage have been researched extensively, the benefits and economic costs of MAR have been little researched. Historical groundwater data are sparse or proprietary within the state, often impairing groundwater analyses. General obligation bonds from ballot propositions offer a strategic means of mining information about MAR projects, because the information is available publicly. We used bond-funding applications to identify anticipated MAR project benefits and proposed economic costs. We then compared these costs with actual project costs collected from a survey, and identified factors that promote or limit MAR. Our analysis indicates that the median proposed economic cost for MAR projects in California is 0.33 per cubic meter per year). Increasing Water Supply, Conjunctive Use, and Flood Protection are the most common benefits reported. Additionally, the survey indicates that (1) there are many reported reasons for differences between proposed and actual costs (US 2015/AFY), the ranges for proposed costs per recharge volume and actual costs per recharge volume for the projects surveyed generally agree. The two most important contributions to the success of a MAR project are financial support and good communication with stakeholders
Benefits and Economic Costs of Managed Aquifer Recharge in California
doi:Â http://dx.doi.org/10.15447/sfews.2016v14iss2art4Groundwater management is important and challenging, and nowhere is this more evident than in California. Managed aquifer recharge (MAR) projects can play an important role in ensuring California manages its groundwater sustainably. Although the benefits and economic costs of surface water storage have been researched extensively, the benefits and economic costs of MAR have been little researched. Historical groundwater data are sparse or proprietary within the state, often impairing groundwater analyses. General obligation bonds from ballot propositions offer a strategic means of mining information about MAR projects, because the information is available publicly. We used bond-funding applications to identify anticipated MAR project benefits and proposed economic costs. We then compared these costs with actual project costs collected from a survey, and identified factors that promote or limit MAR. Our analysis indicates that the median proposed economic cost for MAR projects in California is 0.33 per cubic meter per year). Increasing Water Supply, Conjunctive Use, and Flood Protection are the most common benefits reported. Additionally, the survey indicates that (1) there are many reported reasons for differences between proposed and actual costs (US 2015/AFY), the ranges for proposed costs per recharge volume and actual costs per recharge volume for the projects surveyed generally agree. The two most important contributions to the success of a MAR project are financial support and good communication with stakeholders.</p
Widespread and increased drilling of wells into fossil aquifers in the USA.
Most stored groundwater is fossil in its age, having been under the ground for more than ~12 thousand years. Mapping where wells tap fossil aquifers is relevant for water quality and quantity management. Nevertheless, the prevalence of wells that tap fossil aquifers is not known. Here we show that wells that are sufficiently deep to tap fossil aquifers are widespread, though they remain outnumbered by shallower wells in most areas. Moreover, the proportion of newly drilled wells that are deep enough to tap fossil aquifers has increased over recent decades. However, this widespread and increased drilling of wells into fossil aquifers is not necessarily associated with groundwater depletion, emphasizing that the presence of fossil groundwater does not necessarily indicate a non-renewable water supply. Our results highlight the importance of safeguarding fossil groundwater quality and quantity to meet present and future water demands