700 research outputs found

    On a stochastic partial differential equation with non-local diffusion

    Full text link
    In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reaction term

    Design of linear and star-shaped macromolecular organic semiconductors for photonic applications

    Get PDF
    P.J.S. and A.L.K. thank the EPSRC for funding under Grants EP/R03480X/1, EP/P02744X/2, and EP/N009908/2.One of the most desirable and advantageous attributes of organic materials chemistry is the ability to tune the molecular structure to achieve targeted physical properties. This can be performed to achieve specific values for the ionization potential or electron affinity of the material, the absorption and emission characteristics, charge transport properties, phase behavior, solubility, processability, and many other properties, which in turn can help push the limits of performance in organic semiconductor devices. A striking example is the ability to make subtle structural changes to a conjugated macromolecule to vary the absorption and emission properties of a generic chemical structure. In this Account, we demonstrate that target properties for specific photonic applications can be achieved from different types of semiconductor structures, namely, monodisperse star-shaped molecules, complex linear macromolecules, and conjugated polymers. The most appropriate material for any single application inevitably demands consideration of a trade-off of various properties; in this Account, we focus on applications such as organic lasers, electrogenerated chemiluminescence, hybrid light emitting diodes, and visible light communications. In terms of synthesis, atom and step economies are also important. The star-shaped structures consist of a core unit with 3 or 4 functional connection points, to which can be attached conjugated oligomers of varying length and composition. This strategy follows a convergent synthetic pathway and allows the isolation of target macromolecules in good yield, high purity, and absolute reproducibility. It is a versatile approach, providing a wide choice of constituent molecular units and therefore varying properties, while the products share many of the desirable attributes of polymers. Constructing linear conjugated macromolecules with multifunctionality can lead to complex synthetic routes and lower atom and step economies, inferior processability, and lower thermal or chemical stability, but these materials can be designed to provide a range of different targeted physical properties. Conventional conjugated polymers, as the third type of structure, often feature so-called “champion” properties. The synthetic challenge is mainly concerned with monomer synthesis, but the final polymerization sequence can be hard to control, leading to variable molecular weights and polydispersities and some degree of inconsistency in the properties of the same material between different synthetic batches. If a champion characteristic persists between samples, then the variation of other properties between batches can be tolerable, depending on the target application. In the case of polymers, we have chosen to study PPV-type polymers with bulky side groups that provide protection of their conjugated backbone from π–π stacking interactions. These polymers exhibit high photoluminescence quantum yields (PLQYs) in films and short radiative lifetimes and are an important benchmark to monodisperse star-shaped systems in terms of different absorption/emission regions. This Account therefore outlines the advantages and special features of monodisperse star-shaped macromolecules for photonic applications but also considers the two alternative classes of materials and highlights the pros and cons of each class of conjugated structure.Publisher PDFPeer reviewe

    Spatio-temporal genetic tagging of a cosmopolitan planktivorous shark provides insight to gene flow, temporal variation and site-specific re-encounters

    Get PDF
    Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241–830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Ultra-wide coverage VLC system with alignment-free receiver

    Get PDF
    In this work we present an ultra-wide coverage visible light communication (VLC) system based on a mechanical beam steering system at the transmitter terminal and a fluorescent optical concentrator at the receiver. The transmitter and receiver full field of view (FFOV) are 100° and 120°, respectively. The coverage area of the transmitter system at 2m is 12.5m2 and a data link of 300Mbps has been achieved at this range.Postprin

    Multipolar Reactive DPD: A Novel Tool for Spatially Resolved Systems Biology

    Full text link
    This article reports about a novel extension of dissipative particle dynamics (DPD) that allows the study of the collective dynamics of complex chemical and structural systems in a spatially resolved manner with a combinatorially complex variety of different system constituents. We show that introducing multipolar interactions between particles leads to extended membrane structures emerging in a self-organized manner and exhibiting both the necessary mechanical stability for transport and fluidity so as to provide a two-dimensional self-organizing dynamic reaction environment for kinetic studies in the context of cell biology. We further show that the emergent dynamics of extended membrane bound objects is in accordance with scaling laws imposed by physics.Comment: submitted to CMSB 0

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore