76 research outputs found

    Exercise-Based Cardiac Rehabilitation in Twelve European Countries Results of the European Cardiac Rehabilitation Registry

    Get PDF
    AIM: Results from EuroCaReD study should serve as a benchmark to improve guideline adherence and treatment quality of cardiac rehabilitation (CR) in Europe. METHODS AND RESULTS: Data from 2.054 CR patients in 12 European countries were derived from 69 centres. 76% were male. Indication for CR differed between countries being predominantly ACS in Switzerland (79%), Portugal (62%) and Germany (61%), elective PCI in Greece (37%), Austria (36%) and Spain (32%), and CABG in Croatia and Russia (36%). A minority of patients presented with chronic heart failure (4%). At CR start, most patients already were under medication according to current guidelines for the treatment of CV risk factors. A wide range of CR programme designs was found (duration 3 to 24weeks; total number of sessions 30 to 196). Patient programme adherence after admission was high (85%). With reservations that eCRF follow-up data exchange remained incomplete, patient CV risk profiles experienced only small improvements. CR success as defined by an increase of exercise capacity >25W was significantly higher in young patients and those who were employed. Results differed by countries. After CR only 9% of patients were admitted to a structured post-CR programme. CONCLUSIONS: Clinical characteristics of CR patients, indications and programmes in Europe are different. Guideline adherence is poor. Thus, patient selection and CR programme designs should become more evidence-based. Routine eCRF documentation of CR results throughout European countries was not sufficient in its first application because of incomplete data exchange. Therefore better adherence of CR centres to minimal routine clinical standards is requested

    Impact of exercise-based cardiac rehabilitation in patients with heart failure (ExTraMATCH II) on mortality and hospitalisation:an individual-patient data meta-analysis of randomised trials

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordAIMS: To undertake an individual patient data (IPD) meta-analysis to assess the impact of exercise-based cardiac rehabilitation (ExCR) in patients with heart failure (HF) on mortality and hospitalisation, and differential effects of ExCR according to patient characteristics: age, sex, ethnicity, New York Heart Association functional class, ischaemic aetiology, ejection fraction, and exercise capacity. METHODS AND RESULTS: Randomised trials of exercise training for at least 3 weeks compared with no exercise control with 6-month follow-up or longer, providing IPD time to event on mortality or hospitalisation (all-cause or HF-specific). IPD were combined into a single dataset. We used Cox proportional hazards models to investigate the effect of ExCR and the interactions between ExCR and participant characteristics. We used both two-stage random effects and one-stage fixed effect models. IPD were obtained from 18 trials including 3912 patients with HF with reduced ejection fraction. Compared to control, there was no statistically significant difference in pooled time to event estimates in favour of ExCR although confidence intervals (CIs) were wide [all-cause mortality: hazard ratio (HR) 0.83, 95% CI 0.67-1.04; HF-specific mortality: HR 0.84, 95% CI 0.49-1.46; all-cause hospitalisation: HR 0.90, 95% CI 0.76-1.06; and HF-specific hospitalisation: HR 0.98, 95% CI 0.72-1.35]. No strong evidence was found of differential intervention effects across patient characteristics. CONCLUSION: Exercise-based cardiac rehabilitation did not have a significant effect on the risk of mortality and hospitalisation in HF with reduced ejection fraction. However, uncertainty around effect estimates precludes drawing definitive conclusions.This work is supported by UK National Institute for Health Research funding (HTA 15/80/30)

    British randomised controlled trial of AV and VV optimization ("BRAVO") study:rationale, design, and endpoints

    Get PDF
    Background Echocardiographic optimization of pacemaker settings is the current standard of care for patients treated with cardiac resynchronization therapy. However, the process requires considerable time of expert staff. The BRAVO study is a non-inferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular (VV) delay with an alternative method using non-invasive blood pressure monitoring that can be automated to consume less staff resources. Methods/Design BRAVO is a multi-centre, randomized, cross-over, non-inferiority trial of 400 patients with a previously implanted cardiac resynchronization device. Patients are randomly allocated to six months in each arm. In the echocardiographic arm, AV delay is optimized using the iterative method and VV delay by maximizing LVOT VTI. In the haemodynamic arm AV and VV delay are optimized using non-invasive blood pressure measured using finger photoplethysmography. At the end of each six month arm, patients undergo the primary outcome measure of objective exercise capacity, quantified as peak oxygen uptake (VO2) on a cardiopulmonary exercise test. Secondary outcome measures are echocardiographic measurement of left ventricular remodelling, quality of life score and N-terminal pro B-type Natriuretic Peptide (NT-pro BNP). The study is scheduled to complete recruitment in December 2013 and to complete follow up in December 2014. Discussion If exercise capacity is non-inferior with haemodynamic optimization compared with echocardiographic optimization, it would be proof of concept that haemodynamic optimization is an acceptable alternative which has the potential to be more easily implemented

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Prediction of second neurological attack in patients with clinically isolated syndrome using support vector machines

    Get PDF
    The aim of this study is to predict the conversion from clinically isolated syndrome to clinically definite multiple sclerosis using support vector machines. The two groups of converters and non-converters are classified using features that were calculated from baseline data of 73 patients. The data consists of standard magnetic resonance images, binary lesion masks, and clinical and demographic information. 15 features were calculated and all combinations of them were iteratively tested for their predictive capacity using polynomial kernels and radial basis functions with leave-one-out cross-validation. The accuracy of this prediction is up to 86.4% with a sensitivity and specificity in the same range indicating that this is a feasible approach for the prediction of a second clinical attack in patients with clinically isolated syndromes, and that the chosen features are appropriate. The two features gender and location of onset lesions have been used in all feature combinations leading to a high accuracy suggesting that they are highly predictive. However, it is necessary to add supporting features to maximise the accuracy. © 2013 IEEE
    corecore