132 research outputs found

    Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During normal pregnancy the cervix has a load bearing function. The cervical tissue consists mainly of an extracellular matrix (ECM) rich in collagen; important for the biomechanical properties. The aim of the present study was to evaluate how the biomechanical strength of samples from the distal cervix is associated with collagen content in relation to age and parity. This study demonstrates a method to investigate cervical tissue from women who still have their uterus in situ.</p> <p>Methods</p> <p>Cervical punch biopsies (2 × 15 mm) were obtained from 57 healthy women (median age: 39 years, range: 29-49 years). Biomechanical tensile testing was performed, and collagen concentration (as % of dry defatted weight (DDW)) and content (mg of collagen per mm of specimen length) was determined. Histomorphometry was used to determine the volume densities of extracellular matrix and smooth muscle cells. Smooth muscle cells were identified by immunohistochemistry. Finally, orientation of collagen fibers was estimated. Data are given as mean +/- SD.</p> <p>Results</p> <p>The mean collagen concentration (62.2 +/- 6.6%) increased with age (0.5% per year, r = 0.45, p = 0.003) and decreased with parity (1.7% per birth, r = -0.45, p = 0.033). Maximum load was positively correlated with collagen content (mg of collagen per mm of specimen length) (r = 0.76, p < 0.001). Normalized maximum stiffness was increased with age (r = 0.32, p = 0.017), whereas no correlation was found with regard to parity. In tissue samples with a length of approximately one cm, volume density of smooth muscle cells increased gradually from 8.9% in the distal part near the epithelium, to 15.5% in the proximal part (p < 0.001).</p> <p>Conclusions</p> <p>The present study shows that cervical collagen concentration increases with age and decreases with parity in non-pregnant women. In addition, collagen stiffness increased with age, whereas no change in collagen tensile strength with respect to age and parity was found. These results show that collagen contributes to cervical tissue tensile strength and age and parity should be considered confounding factors.</p

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the tt¯ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV

    Get PDF
    A measurement of the top quark–antiquark pair production cross section σtt¯ in proton–proton collisions at a centre-of-mass energy of 13TeV is presented. The data correspond to an integrated luminosity of 35.9fb−1, recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e ± μ ∓, μ+μ−, e+e−) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of mMCt=172.5GeV the fit yields a measured cross section σtt¯=803±2(stat)±25(syst)±20(lumi)pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of mMCt=172.33±0.14(stat)+0.66−0.72(syst)GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions

    Evidence for Top Quark Production in Nucleus-Nucleus Collisions

    Get PDF
    Peer reviewe

    Search for the pair production of light top squarks in the e(+/-)mu(-/+) final state in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for the production of a pair of top squarks at the LHC is presented. This search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production are very similar, because of the mass difference between the top squark and the neutralino being close to the top quark mass. The search is performed with 35.9 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, collected by the CMS detector in 2016, using events containing one electron-muon pair with opposite charge. The search is based on a precise estimate of the top quark pair background, and the use of the M-T2 variable, which combines the transverse mass of each lepton and the missing transverse momentum. No excess of events is found over the standard model predictions. Exclusion limits are placed at 95% confidence level on the production of top squarks up to masses of 208 GeV for models with a mass difference between the top squark and the lightest neutralino close to that of the top quark.Peer reviewe

    Observation of the B-s(0) -> X(3872)phi Decay

    Get PDF
    Using a data sample of proton-proton collisions at root s = 13 TeV, corresponding to an integrated luminosity of 140 fb(-1) collected by the CMS experiment in 2016-2018, the B-s(0) -> X(3872)phi decay is observed. Decays into J/psi pi(+)pi(-) and K+K- are used to reconstruct, respectively, the X(3872) and phi. The ratio of the product of branching fractions B[B-s(0) -> X(3872)phi]B[X(3872) -> J/psi pi(+)pi(-)] to the product B[B-s(0) ->psi(2S)phi]B[psi(2S) -> J/psi pi(+)pi(-)] is measured to be [2.21 +/- 0.29(stat) +/- 0.17(syst)]%. The ratio B[B-s(0) -> X(3872)phi]/B[B-0 -> X(3872)K-0] is found to be consistent with one, while the ratio B[B-s(0) -> X(3872)phi]/B[B+-> X(3872)K+] is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B-0 and B(0)s meson decays compared to B+. The reported observation may shed new light on the nature of the X(3872) particle.Peer reviewe

    Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at s=13 TeV

    Get PDF
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb(-1) recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.Peer reviewe

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses

    Search for the production of W^{\pm} W^{\pm} W^{\mp} events at \sqrt{s} = 13 TeV

    Get PDF
    A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb^{-1}. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W^{\pm} W^{\pm} W^{\mp} production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34_{-0.34}^{+0.62}. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles
    corecore