1,048 research outputs found

    STM and RHEED study of the Si(001)-c(8x8) surface

    Get PDF
    The Si(001) surface deoxidized by short annealing at T~925C in the ultrahigh vacuum molecular beam epitaxy chamber has been in situ investigated by high resolution scanning tunnelling microscopy (STM) and reflected high energy electron diffraction (RHEED). RHEED patterns corresponding to (2x1) and (4x4) structures were observed during sample treatment. The (4x4) reconstruction arose at T<600C after annealing. The reconstruction was observed to be reversible: the (4x4) structure turned into the (2x1) one at T>600C, the (4x4) structure appeared again at recurring cooling. The c(8x8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8x8) structure decreased as the sample cooling rate was reduced. The (2x1) structure was observed on the surface free of the c(8x8) one. The c(8x8) structure has been evidenced to manifest itself as the (4x4) one in the RHEED patterns. A model of the c(8x8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed.Comment: 26 pages, 12 figure

    Clinical and angiographic success and safety comparison of coronary intravascular lithotripsy: An updated meta-analysis

    Get PDF
    Background Intravascular lithotripsy (IVL) can be used to assist stent deployment in severe coronary artery calcifications (CAC). Methods Studies employing IVL for CAC lesions were included. The primary outcomes included clinical and angiographic success. The secondary outcomes, including lumen gain, maximum calcium thickness, and calcium angle at the final angiography site, minimal lumen area site, and minimal stent area site, were analyzed by the random-effects model to calculate the pooled standardized mean difference. Tertiary outcomes included safety event ratios. Results Seven studies (760 patients) were included. The primary outcomes: pooled clinical and angiographic success event ratio parentage of IVL was 94.4% and 94.8%, respectively. On a random effect model for standard inverse variance for secondary outcomes showed: minimal lumen diameter increase with IVL was 4.68 mm (p-value < 0.0001, 95% CI 1.69–5.32); diameter decrease in the stenotic area after IVL session was −5.23 mm (95 CI –22.6–12.8). At the minimal lumen area (MLA) and final minimal stent area (MSA) sites, mean lumen area gain was 1.42 mm2 (95% CI 1.06–1.63; p < 0.00001) and 1.34 mm2 (95% CI 0.71–1.43; p < 0.00001), respectively. IVL reduced calcium thickness at the MLA site (SMD −0.22; 95% CI −0.40–0.04; P = 0.02); calcium angle was not affected at the MLA site. The tertiary outcomes: most common complication was major adverse cardiovascular events (n = 48/669), and least common complication was abrupt closure of the vessel (n = 1/669). Conclusions Evidence suggests that IVL safely and effectively facilitates stent deployment with high angiographic and clinical success rates in treating severely calcified coronary lesions

    Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors

    Get PDF
    The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30–65 nm and 5 μm in length) ZnO-based metal–semiconductor–metal photoconductor device in order to study the origin of persistent photoconductivity. The current–voltage measurements were carried with and without UV illumination under different oxygen levels. The photoresponse measurements indicated a persistent conductivity trend for depleted oxygen conditions. The persistent conductivity phenomenon is explained on the theoretical model that proposes the change of a neutral anion vacancy to a charged state

    Vacancy and Doping States in Monolayer and bulk Black Phosphorus.

    Get PDF
    The atomic geometries and transition levels of point defects and substitutional dopants in few-layer and bulk black phosphorus are calculated. The vacancy is found to reconstruct in monolayer P to leave a single dangling bond, giving a negative U defect with a +/- transition level at 0.24 eV above the valence band edge. The V(-) state forms an unusual 4-fold coordinated site. In few-layer and bulk black P, the defect becomes a positive U site. The divacancy is much more stable than the monovacancy, and it reconstructs to give no deep gap states. Substitutional dopants such as C, Si, O or S do not give rise to shallow donor or acceptor states but instead reconstruct to form non-doping sites analogous to DX or AX centers in GaAs. Impurities on black P adopt the 8-N rule of bonding, as in amorphous semiconductors, rather than simple substitutional geometries seen in tetrahedral semiconductors

    CMOS-compatible dense arrays of Ge quantum dots on the Si(001) surface: hut cluster nucleation, atomic structure and array life cycle during UHV MBE growth

    Get PDF
    We report a direct observation of Ge hut nucleation on Si(001) during UHV molecular beam epitaxy at 360°C. Nuclei of pyramids and wedges were observed on the wetting layer (WL) (M × N) patches starting from the coverage of 5.1 Å and found to have different structures. Atomic models of nuclei of both hut species have been built as well as models of the growing clusters. The growth of huts of each species has been demonstrated to follow generic scenarios. The formation of the second atomic layer of a wedge results in rearrangement of its first layer. Its ridge structure does not repeat the nucleus. A pyramid grows without phase transitions. A structure of its vertex copies the nucleus. Transitions between hut species turned out to be impossible. The wedges contain point defects in the upper corners of the triangular faces and have preferential growth directions along the ridges. The derived structure of the {105} facet follows the paired dimer model. Further growth of hut arrays results in domination of wedges, and the density of pyramids exponentially drops. The second generation of huts arises at coverages >10 Å; new huts occupy the whole WL at coverages ~14 Å. Nanocrystalline Ge 2D layer begins forming at coverages >14 Å

    Correlation Effects on Stability in Pu Metal and Its Alloys

    Full text link
    The existence of six crystallographic allotropes from room temperature up to the solid-liquid transition just above 913 K at atmospheric pressure makes solid Plutonium unique among the elements in the periodic table. Among these phases (labeled {alpha}, {beta}, {gamma}, {delta}{delta}{prime}), and {var_epsilon}, the {delta} phase, stable between 593 K and 736 K, has commanded considerable interest in the metallurgical and solid state communities. In contrast to the low-temperature monoclinic {alpha} phase, which is brittle, the face-centered cubic (fcc) {delta} phase is ductile, a property that makes it convenient for engineering applications. This phase can also be stabilized through alloying with a number of other elements such as Ga, Al, Sc, and Am

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments β-Catenin Signaling

    Get PDF
    Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6–9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a β-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding β-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of β-catenin signaling to oppose testis determination
    corecore