934 research outputs found

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics

    Full text link
    We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the η\eta exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent zz are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time t,tâ€Čt,t' response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents λR≠λC\lambda_R \neq \lambda_C, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form X(qz(t−tâ€Č),t/tâ€Č)X(q^z (t-t'), t/t'). Analogies and differences with pure critical models are discussed.Comment: 33 pages, RevTe

    Relativistic calculations of isotope shifts in highly charged ions

    Full text link
    The isotope shifts of forbidden transitions in Be- and B-like argon ions are calculated. It is shown that only using the relativistic recoil operator can provide a proper evaluation of the mass isotope shift, which strongly dominates over the field isotope shift for the ions under consideration. Comparing the isotope shifts calculated with the current experimental uncertainties indicates very good perspectives for a first test of the relativistic theory of the recoil effect in middle-Z ions

    Gravitation and inertia; a rearrangement of vacuum in gravity

    Full text link
    We address the gravitation and inertia in the framework of 'general gauge principle', which accounts for 'gravitation gauge group' generated by hidden local internal symmetry implemented on the flat space. We connect this group to nonlinear realization of the Lie group of 'distortion' of local internal properties of six-dimensional flat space, which is assumed as a toy model underlying four-dimensional Minkowski space. The agreement between proposed gravitational theory and available observational verifications is satisfactory. We construct relativistic field theory of inertia and derive the relativistic law of inertia. This theory furnishes justification for introduction of the Principle of Equivalence. We address the rearrangement of vacuum state in gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys. Space Sc

    Relativistic nuclear recoil corrections to the energy levels of hydrogen-like and high ZZ lithium like atoms in all orders in αZ\alpha Z

    Get PDF
    The relativistic nuclear recoil corrections to the energy levels of low-laying states of hydrogen-like and high ZZ lithium-like atoms in all orders in αZ\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low ZZ the results of the calculation are in good agreement with the αZ\alpha Z -expansion results. It is found that the nuclear recoil contribution, additional to the Salpeter's one, to the Lamb shift (n=2n=2) of hydrogen is −1.32(6) kHz-1.32(6)\,kHz. The total nuclear recoil correction to the energy of the (1s)22p12−(1s)22s(1s)^{2}2p_{\frac{1}{2}}-(1s)^{2}2s transition in lithium-like uranium constitutes −0.07 eV-0.07\,eV and is largely made up of QED contributions.Comment: 19 pages, latex, accepted for publication in Phys. Rev.

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    The effect of multiple deformations on the formation of ultrafine grained steels

    Full text link
    A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (&epsilon; C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on &epsilon; C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced &epsilon; C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.<br /

    Production of e+e−e^+e^- Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision

    Get PDF
    We present the first data on e+e−e^+e^- pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. The pair transverse momentum, pTp_T, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The e+e^+ and e−e^- pTp_T spectra are similar, with no evidence for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in Phys. Rev.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore