1,085 research outputs found

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE

    Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order

    Get PDF
    We study the four channels associated with neutrino-deuteron breakup reactions at next-to-next to leading order in effective field theory. We find that the total cross-section is indeed converging for neutrino energies up to 20 MeV, and thus our calculations can provide constraints on theoretical uncertainties for the Sudbury Neutrino Observatory. We stress the importance of a direct experimental measurement to high precision in at least one channel, in order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps

    Epitaxial growth of iron iodide films on Fe(l10)

    Get PDF
    The interaction of iodine vapor on an Fe(110) single crystal surface at room temperature has been investigated primarily through the use of LEED and UPS. Both a series of chemisorbed overlayers and an epitaxial iodide layer are observed. Iodide formation proceeds through an island growth mechanism with the iodide basal plane parallel to the Fe(110) surface. Evidence is presented that the defects introduced on the surface during argon ion sputtering may be important as nucleation sites for iodide growth. The results are compared with the results of previous studies

    Epitaxial growth of iron iodide films on Fe(l10)

    Get PDF
    The interaction of iodine vapor on an Fe(110) single crystal surface at room temperature has been investigated primarily through the use of LEED and UPS. Both a series of chemisorbed overlayers and an epitaxial iodide layer are observed. Iodide formation proceeds through an island growth mechanism with the iodide basal plane parallel to the Fe(110) surface. Evidence is presented that the defects introduced on the surface during argon ion sputtering may be important as nucleation sites for iodide growth. The results are compared with the results of previous studies

    High Energy QCD: Stringy Picture from Hidden Integrability

    Get PDF
    We discuss the stringy properties of high-energy QCD using its hidden integrability in the Regge limit and on the light-cone. It is shown that multi-colour QCD in the Regge limit belongs to the same universality class as superconformal N\cal{N}=2 SUSY YM with Nf=2NcN_f=2N_c at the strong coupling orbifold point. The analogy with integrable structure governing the low energy sector of N\cal{N}=2 SUSY gauge theories is used to develop the brane picture for the Regge limit. In this picture the scattering process is described by a single M2 brane wrapped around the spectral curve of the integrable spin chain and unifying hadrons and reggeized gluons involved in the process. New quasiclassical quantization conditions for the complex higher integrals of motion are suggested which are consistent with the SS-duality of the multi-reggeon spectrum. The derivation of the anomalous dimensions of the lowest twist operators is formulated in terms of the Riemann surfacesComment: 37 pages, 3 figure

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
    corecore