45 research outputs found

    Temporal bone phantom for decoupled cochlear implant electrode insertion force measurement

    Get PDF
    In research on cochlear implants, preclinical testing of newly developed electrode arrays and surgical tools is an essential procedure, which requires the availability of a suitable testing environment. For this purpose, human temporal bone specimens are most realistic, but their availability is limited and additional parameters such as insertion forces are hardly measurable. Therefore, the aim of this study was to develop a temporal bone phantom with realistic anatomical structures for intracochlear force measurement. The temporal bone was segmented from CBCT data of a human cadaver head. The segmented model was 3D printed with an additional artificial skin layer to enable the simulated use of surgical instruments such as a self-retaining retractor. A mechanically decoupled artificial cochlear model was realistically positioned within the temporal bone and was furthermore attached to a force sensor. The usability of the phantom was evaluated by performing automated EA insertions using an automated hydraulic insertion device. The experiments showed that the insertion forces within the cochlea could be measured without interferences from surrounding structures. Moreover, the artificial skin provided a rigid interface for the insertion tool. The new phantom is a realistic testing and training platform for cochlear implant electrode insertions with the advantage of measureable insertion forces

    Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida

    Get PDF
    It is commonly assumed that the nitrogen to phosphorus (N:P) ratio of a terrestrial plant reflects the relative availability of N and P in the soil in which the plant grows. Here, this was assessed for a tropical pioneer tree, Ficus insipida. Seedlings were grown in sand and irrigated with nutrient solutions containing N:P ratios ranging from <1 to >100. The experimental design further allowed investigation of physiological responses to N and P availability. Homeostatic control over N:P ratios was stronger in leaves than in stems or roots, suggesting that N:P ratios of stems and roots are more sensitive indicators of the relative availability of N and P at a site than N:P ratios of leaves. The leaf N:P ratio at which the largest plant dry mass and highest photosynthetic rates were achieved was ∼11, whereas the corresponding whole-plant N:P ratio was ∼6. Plant P concentration varied as a function of transpiration rate at constant nutrient solution P concentration, possibly due to transpiration-induced variation in the mass flow of P to root surfaces. The transpiration rate varied in response to nutrient solution N concentration, but not to nutrient solution P concentration, demonstrating nutritional control over transpiration by N but not P. Water-use efficiency varied as a function of N availability, but not as a function of P availability

    A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    Get PDF
    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100

    Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis

    Get PDF
    Introduction Increased biochemical bone turnover markers (BTMs) measured in serum are associated with bone loss, increased fracture risk and poor treatment adherence, but their role in clinical practice is presently unclear. The aim of this consensus group report is to provide guidance to clinicians on how to use BTMs in patient evaluation in postmenopausal osteoporosis, in fracture risk prediction and in the monitoring of treatment efficacy and adherence to osteoporosis medication. Methods A working group with clinical scientists and osteoporosis specialists was invited by the Scientific Advisory Board of European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Results Serum bone formation marker PINP and resorption marker βCTX-I are the preferred markers for evaluating bone turnover in the clinical setting due to their specificity to bone, performance in clinical studies, wide use and relatively low analytical variability. BTMs cannot be used to diagnose osteoporosis because of low sensitivity and specificity, but can be of value in patient evaluation where high values may indicate the need to investigate some causes of secondary osteoporosis. Assessing serum levels of βCTX-I and PINP can improve fracture prediction slightly, with a gradient of risk of about 1.2 per SD increase in the bone marker in addition to clinical risk factors and bone mineral density. For an individual patient, BTMs are not useful in projecting bone loss or treatment efficacy, but it is recommended that serum PINP and βCTX-I be used to monitor adherence to oral bisphosphonate treatment. Suppression of the BTMs greater than the least significant change or to levels in the lower half of the reference interval in young and healthy premenopausal women is closely related to treatment adherence. Conclusion In conclusion, the currently available evidence indicates that the principal clinical utility of BTMs is for monitoring oral bisphosphonate therapy

    New handbook for standardised measurement of plant functional traits worldwide

    Full text link

    Temporal bone phantom for decoupled cochlear implant electrode insertion force measurement

    No full text
    In research on cochlear implants, preclinical testing of newly developed electrode arrays and surgical tools is an essential procedure, which requires the availability of a suitable testing environment. For this purpose, human temporal bone specimens are most realistic, but their availability is limited and additional parameters such as insertion forces are hardly measurable. Therefore, the aim of this study was to develop a temporal bone phantom with realistic anatomical structures for intracochlear force measurement. The temporal bone was segmented from CBCT data of a human cadaver head. The segmented model was 3D printed with an additional artificial skin layer to enable the simulated use of surgical instruments such as a self-retaining retractor. A mechanically decoupled artificial cochlear model was realistically positioned within the temporal bone and was furthermore attached to a force sensor. The usability of the phantom was evaluated by performing automated EA insertions using an automated hydraulic insertion device. The experiments showed that the insertion forces within the cochlea could be measured without interferences from surrounding structures. Moreover, the artificial skin provided a rigid interface for the insertion tool. The new phantom is a realistic testing and training platform for cochlear implant electrode insertions with the advantage of measureable insertion forces

    The tumour microenvironment and immune milieu of cholangiocarcinoma

    Full text link
    Tumour microenvironment is a complex, multicellular functional compartment that, particularly when assembled as an abundant desmoplastic reaction, may profoundly affect the proliferative and invasive abilities of epithelial cancer cells. Tumour microenvironment comprises not only stromal cells, mainly cancer-associated fibroblasts, but also immune cells of both the innate and adaptive system (tumour-associated macrophages, neutrophils, natural killer cells, and T and B lymphocytes), and endothelial cells. This results in an intricate web of mutual communications regulated by an extensively remodelled extracellular matrix, where the tumour cells are centrally engaged. In this regard, cholangiocarcinoma, in particular the intrahepatic variant, has become the focus of mounting interest in the last years, largely because of the lack of effective therapies despite its rising incidence and high mortality rates worldwide. On the other hand, recent studies in pancreatic cancer, which similarly to cholangiocarcinoma, is highly desmoplastic, have argued against a tumour-promoting function of the tumour microenvironment. In this review, we will discuss recent developments concerning the role of each cellular population and their multifaceted interplay with the malignant biliary epithelial counterpart. We ultimately hope to provide the working knowledge on how their manipulation may lead to a therapeutic gain in cholangiocarcinoma

    Climate Change and Security in the Mediterranean: Exploring the Nexus, Unpacking International Policy Responses

    No full text
    International audienceThis volume examines the multidimensional relationship between climate change and security across Mediterranean Basin states and societies, underscoring the key social, political and economic challenges of the present climate emergency and outlining possible cooperative avenues to mitigate its most adverse effects. Part of a broader research and engagement agenda on climate and the environment undertaken by the New-Med Research Network since 2020, individual chapters, written by leading scientists, academics and policy researchers, tackle different dimensions of the climate change-security nexus in the Mediterranean, assessing its implications on state and societal resilience, the future of living ecosystems and the stability of social contracts as well as the urgent need to strengthen genuine intra-Mediterranean collaboration to face the climate emergency and promote an equitable sharing of the risks and burdens associated with the green energy transition
    corecore