134 research outputs found

    Development of ERAU VOLTRON Hybrid-Electric Powerplant

    Get PDF
    The energy density of today’s batteries is not high enough for electric powered aircraft to achieve an operationally viable range plus FAA stipulated reserve flight times. Hybrid-electric power generation systems may be able to bridge the gap, providing a way for these aircraft to fly distances not possible with batteries alone. There is a recognition that gasoline-electric hybrid systems can deliver specific energy and specific power that are higher than any currently available battery system. Embry-Riddle Aeronautical University’s (ERAU’s) Eagle Flight Research Center (EFRC) is building a 70+ kW hybrid-electric power generation system using a rotary engine and Permanent Magnet Synchronous Machine (PMSM) & Inverter. The rotary engine will be directly coupled to the PMSM which will generate electrical energy to power multi-rotor eVTOL vehicles. These results will be achieved by utilizing advanced control systems implemented on a National Instruments Compact RIO. Past research conducted at the EFRC demonstrated the ability to design and operate a hybrid-electric powerplant. The VOLTRON project will attempt to create a system with an even higher specific energy but with the compact size and high power characteristics of a rotary engine and eventually alternative fuel flexibility

    AIAA Design, Build, Fly Team - MULLET Competition Aircraft 2021-2022

    Get PDF
    MULLET, the Medical Unmanned Low-Level Electric Transport, is Embry-Riddle Aeronautical University Daytona Beach’s aircraft for the 2021–2022 AIAA Design, Build, Fly competition. This UAV was designed to perform four missions, including a ground mission and three flight missions. Mission 1 is a deployment flight that demonstrates the aircraft’s flight capability; Mission 2 is a staging flight for the transportation of vaccine syringes; Mission 3 is a delivery flight for the transportation and deployment of vaccine vial packages; and the Ground Mission is a demonstration of the ability to rapidly prepare the aircraft for flight. The aircraft was designed, manufactured, and flown by a team of 40 undergraduate aerospace engineering students. The design process comprised three phases: conceptual, preliminary, and detail design. Initially, the conceptual design focused on analyzing the requirements with a scoring analysis to select the optimal payload that maximized the mission scores. After the aircraft and subsystem configurations were selected, the weight, wing, tail, and propulsion system were sized during the preliminary design. A detail design then focused on the aircraft’s structural characteristics and systems integration. The manufacturing process followed with the goal of fabricating the aircraft to the designed specifications and weight. A detailed schedule was developed and was continuously refined to manufacture each aircraft iteration in a timely manner, enabling rapid prototyping throughout the design, build, and fly process. Finally, a testing plan was established to evaluate a series of test objectives essential to the aircraft’s mission performance

    The Cross-Talk between Spirochetal Lipoproteins and Immunity

    Get PDF
    Spirochetal diseases such as syphilis, Lyme disease and leptospirosis are major threats to public health. However the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are proinflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Advances in Auctions

    Get PDF
    As a selling mechanism, auctions have acquired a central position in the free market economy all over the globe. This development has deepened, broadened, and expanded the theory of auctions in new directions. This chapter is intended as a selective update of some of the developments and applications of auction theory in the two decades since Wilson (1992) wrote the previous Handbook chapter on this topic

    The unfolded protein response in neurodegenerative diseases: a neuropathological perspective

    Get PDF

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    eVTOL/AAM RPM Controlled rotor design process and research

    No full text
    This study focuses on the identification and optimization of key aerodynamic features in rotor blades, crucial for RPM control. The central aim is to develop an iterative blade-element optimization model, designed to enhance efficiency, minimize blade tip speeds, and ensure robust handling qualities vital for vehicles employing RPM control rotors. The research also involves creating a simplified vehicle dynamics model. This model is intended to integrate with the optimization process, allowing for the derivation of quantitative vehicle control parameters suitable for any blade design. Such integration is pivotal for understanding the impact of various blade designs on vehicle performance and control Significant implications are anticipated from this research in advancing RPM-controlled rotor design within the eVTOL (electric Vertical Takeoff and Landing) market and AAM (Advanced Air Mobility) infrastructure. Insights from this study are expected to contribute substantially to vehicle control certification processes and performance optimization in these aircraft. Furthermore, the findings of this research are poised to influence future eVTOL designs significantly. By focusing on enhanced efficiency, safety, and environmental sustainability, the study aims to contribute meaningfully to the evolving Advanced Air Mobility infrastructure
    corecore