152 research outputs found

    Influence of the North Atlantic on simulated atmospheric variability

    Get PDF
    An atmospheric general circulation model is used to investigate the influence of the North Atlantic Ocean on atmospheric variability. The study covers the period from 1950 to 1994. The observed sea surface temperature and sea ice extension are used to force the atmospheric model. Several configurations of the oceanic boundary conditions were made to isolate the role of the North Atlantic and to study its non-linear interaction with forcings from other oceanic basins. The multi-realization character of the experiments distinguishes between the internal random part and the external forced part of the total variability. The potential predictability can thus be evaluated. The response of the atmosphere is also studied with a modal approach in terms of hemispheric teleconnection patterns. The North Atlantic Ocean has a direct influence on both the Northern Hemisphere annular mode and the Pacific-North-America pattern, leading to a weak predictability. However the direct response is largely modulated by forcings from other oceanic basins. The non-linearity of the system compensates the predictable component of the annular mode induced by the North Atlantic forcing. Furthermore it reduces the forced component of the Pacific-North-America pattern, increasing its chaoticity

    Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions

    Get PDF
    Accurate parameterization of reference evapotranspiration ( ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, and pollution) or with under-irrigation (crop stress and suboptimal yields or quality). ET0 is often estimated using the FAO-56 method with meteorological data gathered over a reference surface, usually short grass. However, the density of suitable ET0 stations is often low relative to the microclimatic variability of many arid and semi-arid regions, leading to a potentially inaccurate ET0 for irrigation scheduling. In this study, we investigated multiple ET0 products from six meteorological stations, a satellite ET0 product, and integration (merger) of two stations’ data in Southern California, USA. We evaluated ET0 against lysimetric ET observations from two lysimeter systems (weighing and volumetric) and two crops (wine grapes and Jerusalem artichoke) by calculating crop ET ( ETc) using crop coefficients for the lysimetric crops with the different ET0. ETc calculated with ET0 products that incorporated field-specific wind speed had closer agreement with lysimetric ET, with RMSE reduced by 36 and 45% for grape and Jerusalem artichoke, respectively, with on-field anemometer data compared to wind data from the nearest station. The results indicate the potential importance of on-site meteorological sensors for ET0 parameterization; particularly where microclimates are highly variable and/or irrigation water is expensive or scarce

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624
    corecore