83 research outputs found

    Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) is a fatal, dominant neurodegenerative disorder. MJD results from polyglutamine repeat expansion in the MJD-1 gene, conferring a toxic gain of function to the ataxin-3 protein. In this study, we aimed at overexpressing ataxin-3 in the rat brain using lentiviral vectors (LV), to generate an in vivo MJD genetic model and, to study the disorder in defined brain regions: substantia nigra, an area affected in MJD, cortex and striatum, regions not previously reported to be affected in MJD. LV encoding mutant or wild-type human ataxin-3 was injected in the brain of adult rats and the animals were tested for behavioral deficits and neuropathological abnormalities. Striatal pathology was confirmed in transgenic mice and human tissue. In substantia nigra, unilateral overexpression of mutant ataxin-3 led to: apomorphine-induced turning behavior; formation of ubiquitinated ataxin-3 aggregates; α-synuclein immunoreactivity; and loss of dopaminergic markers (TH and VMAT2). No neuropathological changes were observed upon wild-type ataxin-3 overexpression. Mutant ataxin-3 expression in striatum and cortex, resulted in accumulation of misfolded ataxin-3, and within striatum, loss of neuronal markers. Striatal pathology was confirmed by observation in MJD transgenic mice of ataxin-3 aggregates and substantial reduction of DARPP-32 immunoreactivity and, in human striata, by ataxin-3 inclusions, immunoreactive for ubiquitin and α-synuclein. This study demonstrates the use of LV encoding mutant ataxin-3 to produce a model of MJD and brings evidence of striatal pathology, suggesting that this region may contribute to dystonia and chorea observed in some MJD patients and may represent a target for therapie

    Preventing Ataxin-3 protein cleavage mitigates degeneration in a Drosophila model of SCA3

    Get PDF
    Protein cleavage is a common feature in human neurodegenerative disease. Ataxin-3 protein with an expanded polyglutamine (polyQ) repeat causes spinocerebellar ataxia type-3 (SCA3), also called Machado–Joseph disease, and is cleaved in mammalian cells, transgenic mice and SCA3 patient brain tissue. However, the pathological significance of Ataxin-3 cleavage has not been carefully examined. To gain insight into the significance of Ataxin-3 cleavage, we developed a Drosophila SL2 cell-based model as well as transgenic fly models. Our data indicate that Ataxin-3 protein cleavage is conserved in the fly and may be caspase-dependent as reported previously. Importantly, comparison of flies expressing either wild-type or caspase-site mutant proteins indicates that Ataxin-3 cleavage enhances neuronal loss in vivo. This genetic in vivo confirmation of the pathological role of Ataxin-3 cleavage indicates that therapies targeting Ataxin-3 cleavage might slow disease progression in SCA3 patients

    Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways

    Get PDF
    The risk of developing neurodegenerative diseases increases with age. Although many of the molecular pathways regulating proteotoxic stress and longevity are well characterized, their contribution to disease susceptibility remains unclear. In this study, we describe a new Caenorhabditis elegans model of Machado–Joseph disease pathogenesis. Pan-neuronal expression of mutant ATXN3 leads to a polyQ-length dependent, neuron subtype-specific aggregation and neuronal dysfunction. Analysis of different neurons revealed a pattern of dorsal nerve cord and sensory neuron susceptibility to mutant ataxin-3 that was distinct from the aggregation and toxicity profiles of polyQ-alone proteins. This reveals that the sequences flanking the polyQ-stretch in ATXN3 have a dominant influence on cell-intrinsic neuronal factors that modulate polyQ-mediated athogenesis. Aging influences the ATXN3 phenotypes which can be suppressed by the nregulation of the insulin/insulin growth factor-1-like signaling pathway and activation of heat shock factor-1.This work was supported by grants from FundacĂŁo CiĂȘncia eTecnologia (FCT) to P.M. (PTDC/SAU-GMG/64076/2006, PTDC/SAU-GMG/112617/2009, SFRH/BD/27258/2006 to A.T.C., UMINHO/BI/052/2010 to A.J. and SFRH/BD/51059/2010 to A.N.C.), from the National Ataxia Foundation to PM and from the National Institutes of Health (NIGMS, NIA and NINDS) to R.M. This work was also granted by the Hospital San Rafael (Coruna) with the Rafael Hervada prize on Biomedical Research (2010)

    Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3

    Get PDF
    Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology

    Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts

    Get PDF
    Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.Project ON.2 SR&TD Integrated Program (NORTE-07-0124-FEDER-000021), co-funded by North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund (ERDF) and also supported by Fundação para a CiĂȘncia e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014)info:eu-repo/semantics/publishedVersio

    The European rescue of the Washington Consensus? EU and IMF lending to Central and Eastern European countries

    Get PDF
    The latest global financial crisis has allowed the International Monetary Fund (IMF) a spectacular comeback. But despite its notorious reputation as a staunch advocate of restrictive economic policies, the Fund has displayed less preference for austerity in recent crisis lending. Though widely welcomed as overdue, the IMF’s shift away from what John Williamson coined the ‘Washington Consensus’ was met with resistance from the European Union (EU) where it concerned Central and Eastern European (CEE) countries. The situation of hard-hit Hungary, Latvia, and Romania propelled unprecedented cooperation between the IMF and the EU, in which the EU has very actively promoted orthodox measures in return for loans. We argue that this represents a European rescue of the Washington Consensus. The case of Latvia is paradigmatic for the profound disagreements between an austerity-demanding EU and a less austere IMF. The IMF’s stance contradicts conventional wisdom about the organization as the guardian of economic orthodoxy. To solve this puzzle, we shed light on three complementary factors of (non)learning that have shaped the EU’s relations vis-à-vis CEE borrowing countries in comparison to the IMF’s: (1) a disadvantageous institutional setting; (2) vociferous creditor coalitions; (3) the precarious eurozone project
    • 

    corecore