1,295 research outputs found

    Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors.

    Get PDF
    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow

    A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli

    Get PDF
    This is the author accepted manuscript. The final version is available fromFerrata Storti Foundation via the DOI in this recordThe regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilised to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NOXs on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that:1) intracellular but not extracellular superoxide anion generated by NADPH oxidases (NOXs) is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidised low density lipoproteins (oxLDL) and amyloid peptide β (Aβ), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights on the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aβ), but does not completely abolish platelet haemostatic function. This information offers new opportunities for the development of disease specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.British Heart Foundatio

    NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow.

    Get PDF
    First described as essential to the phagocytic activity of leukocytes, Nox2-derived ROS have emerged as mediators of a range of cellular and tissue responses across species from salubrious to deleterious consequences. Knowledge of their role in inflammation is limited, however. We postulated that TNFα-induced endothelial reactive oxygen species (ROS) generation and pro-inflammatory signaling would be ameliorated by targeting Nox2. Herein, we in silico-modelled two first-in-class Nox2 inhibitors developed in our laboratory, explored their cellular mechanism of action and tested their efficacy in in vitro and mouse in vivo models of inflammation. Our data show that these inhibitors (CPP11G and CPP11H) disrupted canonical Nox2 organizing factor, p47phox, translocation to Nox2 in the plasma membrane; and abolished ROS production, markedly attenuated stress-responsive MAPK signaling and downstream AP-1 and NFκB nuclear translocation in human cells. Consequently, cell adhesion molecule expression and monocyte adherence were significantly inhibited by both inhibitors. In vivo, TNFα-induced ROS and inflammation were ameliorated by targeted Nox2 inhibition, which, in turn, improved hind-limb blood flow. These studies identify a proximal role for Nox2 in propagated inflammatory signaling and support therapeutic value of Nox2 inhibitors in inflammatory disease

    Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation

    Get PDF
    NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.This work was supported by National Institutes of Health (NIH) R01 awards [R01 HL 133864 (A.C.S), R01 HL 128304 (A.C.S), R01 HL 149825 (A.C.S), R01 HL 153532 (A.C.S), R01 GM 125944 (F.J.S.), R01 DK 112854 (F.J.S.), 1S10OD021540-01 (Center for Biologic Imaging, University of Pittsburgh), 1S10RR019003-01 (Simon Watkins (S.W.)), 1S10RR025488-01 (S.W.), 1S10RR016236-01 (S.W)]. American Heart Association (AHA) [Established Investigator Award 19EIA34770095 (A.C.S.)], Post-doctoral Fellowship 19POST34410028 (S.Y.)]. American Society of Hematology (ASH) Minority Hematology Graduate Award (A.M.D-O.). Junta de Andalucía grant BIO-177 (P.N.), the FEDER Funding Program from the European Union and Spanish Ministry of Science, Innovation and Universities grant RED2018-102576-T (P.N.)

    Selective Light-Triggered Release of DNA from Gold Nanorods Switches Blood Clotting On and Off

    Get PDF
    Blood clotting is a precise cascade engineered to form a clot with temporal and spatial control. Current control of blood clotting is achieved predominantly by anticoagulants and thus inherently one-sided. Here we use a pair of nanorods (NRs) to provide a two-way switch for the blood clotting cascade by utilizing their ability to selectively release species on their surface under two different laser excitations. We selectively trigger release of a thrombin binding aptamer from one nanorod, inhibiting blood clotting and resulting in increased clotting time. We then release the complementary DNA as an antidote from the other NR, reversing the effect of the aptamer and restoring blood clotting. Thus, the nanorod pair acts as an on/off switch. One challenge for nanobiotechnology is the bio-nano interface, where coronas of weakly adsorbed proteins can obscure biomolecular function. We exploit these adsorbed proteins to increase aptamer and antidote loading on the nanorods.National Science Foundation (U.S.) (Grant DMR #0906838

    Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models

    Get PDF
    Nox/Duox NADPH oxidases are now considered the primary, regulated sources of reactive oxygen species (ROS). These enzymes are expressed in diverse cells and tissues, and their products are essential in several physiological settings. Knockout mouse models are instrumental in identifying the physiological functions of Nox/Duox enzymes as well as in exploring the impact of their pharmacological targeting on disease progression. The currently available data from experiments on knockout animals suggest that the lack of non-phagocytic Nox/Duox enzymes often modifies the course and phenotype in many disease models. Nevertheless, as illustrated by studies on Nox4-deficient animals, the absence of Nox-derived ROS can also lead to aggravated disease manifestation, reinforcing the need for a more balanced view on the role of ROS in health and disease. Members of the Nox/Duox NADPH oxidase family produce ROS in a regulated manner in several different cells and tissues.Pharmacological inhibition of non-phagocytic Nox/Duox enzymes might have therapeutic potential.Several studies have described the disease-modifying phenotypes of Nox1 and Nox4 knockouts.The lack of Nox4-derived ROS can lead to aggravated disease development, which is in contrast to the prevailing dogma that considers ROS to be generally harmful. © 2016 Elsevier Ltd

    NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?

    Get PDF
    Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
    corecore