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Abstract

Oxidative stress-related diseases underlie many if not all of the major leading causes of death in 

United States and the Western World. Thus, enormous interest from both academia and 

pharmaceutical industry has been placed on the development of agents which attenuate oxidative 

stress. With that in mind, great efforts have been placed in the development of inhibitors of 

NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative 

stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves 

numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its 

activity. In this review, we will provide an updated overview of the available Nox inhibitors, both 

peptidic and small molecules, and discuss the body of data related to their possible mechanisms of 

action and specificity towards each of the various isoforms of Nox. Indeed, there have been some 

very notable successes. However, despite great commitment by many in the field, the need for 

efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of 

major diseases as well as for delineating the contribution of a given Nox in physiological redox 

signalling, continues to grow.
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INTRODUCTION

ROS and Disease

Oxidative stress is implicated as a common underpinning in hypertension [1], cancer [2], 

diabetes [3], ischemia reperfusion injury [4], neurodegenerative disorders such as 

Alzheimer’s and Parkinson’s disease [5] to name a few. As these diseases underlie many if 

not all of the major leading causes of death in United States [6], and the Western World, 

enormous interest from both academia and pharmaceutical industry, has been placed on the 

development of agents which attenuate oxidative stress. This attenuation can be either via 
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the agent’s role as antioxidants or as inhibitors of enzymatic sources implicated in altering 

the redox state within cells and tissues. Oxidative stress is a term describing a shift towards a 

pro-oxidative cell or tissue state whereby reactive oxygen (ROS) and nitrogen species (RNS) 

overwhelm antioxidant defense mechanisms. The latter serve to (a) scavenge excessive ROS 

and repair attendant damage by such excess; and/or (b) maintain reduced (GSH)/oxidized 

(GSSG) glutathione ratios responsible to preserve adequate reducing equivalents for overall 

cell function as well as key antioxidant and non-antioxidant enzymes. While multiple 

enzymatic sources are capable of generating ROS, a wide consensus in the literature accepts 

that the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) family are 

major “professional” producers of ROS and linked to the aforementioned and many other 

pathologies [1,2,5,7–17] An extensive discussion of the important roles of ROS from a 

variety of other subcellular sources can be found in more comprehensive reviews elsewhere 

[1,18,19].

Nox Enzymes

NADPH oxidases (Noxs) are considered “professional” ROS-producing enzymes as their 

primary, defined function is the generation of superoxide and/or hydrogen peroxide (H2O2) 

via the controlled transfer of electrons from NADPH to molecular oxygen by way of flavin 

adenine dinucleotide (FAD)-binding and NADPH-binding sites on the enzymes’ C-terminal 

tail. Importantly, the Nox family of functionally- and structurally-related enzyme systems is 

comprised of seven members; namely Nox1 through 5 and DUOX1 & 2. Interestingly, these 

isoforms differ in their tissue distribution, level of expression, nature of ROS produced, and 

control by distinct signaling modulators. Of these, Nox2, which is present in neutrophils and 

macrophages, was the first to be discovered [20,21] and is the most thoroughly characterized 

isoform. As the structure, localization and activation mechanisms for the Nox family 

members have been the subject of numerous in-depth reviews, [4,22] they will not be 

mentioned in detail here, except to give the reader a deeper perspective of the complexity of 

interactions required for a fully functional enzyme. This perspective will then inform the 

reader of the wide variety of strategic interventions that are plausible for Nox inhibition.

All Nox isoforms are characterized by a catalytic core, consisting of a bis-heme-containing 

transmembrane domain (6 – 7) and a C-terminal intracellular dehydrogenase tail that carries 

the required sites for FAD and NADPH binding. p22phox, a membrane-bound component 

present in Nox1-, Nox2, Nox3 and Nox4 complexes (but not in those of Nox5, Duox1 or 

Duox2), stabilizes its Nox counterpart and serves as a docking site for other regulatory 

subunits depending on the particular Nox system. [23]. These other regulatory subunits can 

act as organizers (targeting other subunits to the membrane) or as activators (directly 

modulating catalytic activity). The active Nox2 oxidase system comprises the Nox2 subunit 

and p22phox(membranal) as well as cytosolic p47phox (organizer), p67phox(activator), 

p40phox and the small Rho-family GTP-binding protein Rac2 and also Rac1 [24,25]. 

Similarly, the active Nox1 system is comprised of membrane-bound Nox1 and p22phox and 

in its generally accepted, canonical complex, of organizing subunit NoxO1 (homolog of 

p47phox), activating subunit NoxA1 (homologue of p67phox), and Rac1 [26]. Increasing 

evidence supports a non-canonical-Nox1 system which utilizes p47phox, in lieu of NoxO1, 

for activation [27] in vascular smooth muscle cells. As it is for Nox1, evidence supports the 
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notion that the rodent Nox3 oxidase system requires NoxO1, NoxA1, and Rac1 besides its 

core membranal Nox3 and p22phox subunits [28] while human Nox3 has been reported to be 

activated by NoxO1 alone [29]. On the other hand, p47phox and p67phox apparently can, in 

certain settings, supplant the role of NoxO1 and NoxA1 in Nox3 oxidase albeit to lesser 

effect [30,31]. To our knowledge, Nox3 expression is restricted to the inner ear and some 

fetal tissues [28]. In contrast, the Nox4 isozyme includes the Nox4 subunit and p22phox, but 

the only other reported protein to our knowledge to modulate its function is Poldip2 [32]. 

Another differential feature of Nox4 is that is reportedly constitutively active and 

preferentially produces H2O2 over superoxide anion [33]. Incidentally, Nox4 has been 

proposed as an oxygen sensor [33]. Nox5 and DUOXs 1and 2 are distinct from Noxs 1 

through 4 as they putatively do not require p22phox for membrane stabilization and are 

regulated by calcium binding to EF-hand motifs present in their N-terminal calmodulin 

homology domains [34–36]. Interestingly, Duox1 and Duox2 have an extra membrane-

spanning domain with a peroxidase-like domain in their extracellular N-terminal region. 

Processing of Duox1 and 2 involving endoplasmic reticulum-to-Golgi transition, maturation, 

and translocation to the plasma membrane requires the presence of DUOXA1 and 

DUOXA2, respectively, to constitute a fully functional H2O2-generating enzyme [37].

As described above, the assembly and regulation of a catalytically active Nox system 

involves numerous protein-protein interactions [38–40]. Depicted in Figure 1 are common 

sites of interaction between the individual components of an active Nox enzyme. In the case 

of the Nox2 isozyme, a key interaction exists between a pro-line-rich domain (PRD) on 

p22phox and the bis-Src Homology 3 (SH3) domains of the organizer p47phox(Fig. 1: #1)

[41,42]. p47phox also interacts with the SH3 domains from the activator p67phox through its 

C-terminal PRD region and through an additional surface, a helix-turn-helix motif, 

downstream from PRD (Fig. 1: #2)) [43–46]. As an organizer, p47phox binds to the C-

terminus of Nox2 through its polybasic region (Fig. 1: #3) [47]. On the other hand, p67phox 

is able to interact with Nox2 C-terminus (Fig. 1: #4) [48,49] and with Rac (Fig. 1: #5) [50]. 

Intramolecular interactions within individual Nox components important for enzymatic 

activity have also been described (Fig. 1: #6). For example, in dormant phagocytes the SH3 

domains of p47phox interact with its auto-inhibitory region (AIR) [42,51]. This 

intramolecular interaction blocks the SH3 domains’ interaction with other subunits. It is only 

upon serine phosphorylation by protein kinase C that these SH3 domains are unmasked and 

enzyme activation proceeds. In the case of the canonical Nox1 system, similar protein-

protein interactions have been demonstrated for NoxO1 and p22phox. However, the 

interaction between NoxO1 and NoxA1 were shown to be significantly different from that 

between their homologous subunits in Nox2 in that the surface of interaction between both 

proteins seems to have lower affinity and to involve only the helix-turn-helix motif of 

NoxO1 interacting with the SH3 domain of NoxA1 [52]. This difference may offer insight 

into functional differences between the Nox1 and 2 isoforms. In addition, Yamamoto et al., 
demonstrated that interaction of NoxO1 and NoxA1 is further regulated by phosphorylation 

of T341 of NoxO1 that in turn increases Nox1 activity [53]. Intramolecular interactions 

within NoxO1 are also distinct from its counterpart, p47phox. That is, NoxO1’s auto-

inhibitory potential at its C-terminal region is less pronounced, which may allow for the 

observed higher basal Nox1-derived superoxide anion generation [52]. Intramolecular 
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interactions within the Nox anchoring subunits have also been described for Nox4 and Nox2 

in which the polybasic region in the second intracellular loop, loop B, putatively binds to the 

DH-domain linking the heme-binding transmembrane domain with the FAD- and NADPH-

binding domains. Thus, it is proposed that this intramolecular folding facilitates electron 

transfer and superoxide anion production [54]. In the case of Nox5, whose B-loop does not 

contain a polybasic region, the intramolecular interaction involves region in the EF-hands 

domain and a regulatory EF-hand-binding domain within the DH domain [55].

Finally, protein-protein interactions between the membrane-spanning subunits have also 

been described (Fig. 1: #7). For example, Ambasta et al., using fluorescence resonance 

energy transfer techniques, demonstrated that p22phox forms complexes with Nox1, Nox2, 

and Nox4 disrupted by mutation of histidine 115 [56]. Differential interactions between 

Nox4 and p22phox have also been shown by mutation analysis [57]. Notwithstanding the 

need for specific Nox enzyme inhibitors for diseases in which oxidative stress is a causative 

factor, Nox isozymes have emerged as pivotal to homeostatic redox signaling. Thus, a better 

understanding of the aforementioned interactions is expected to provide key insight into 

modalities to “tweak” Nox activity in the positive or negative sense. Indeed, Noxs play an 

important role in signal transduction, i.e. participating in pathways including ERK1 and 

ERK2, NF-kB, JNK, and others leading to salutary and/or compensatory phenotypes 

[58,59]. Our growing appreciation of Noxs modulating fundamental physiological processes 

has shed important new light on the complex yet elemental significance of this oxidase 

family of enzymes [60].

History of Nox Inhibitors

Our understanding of the contribution of any given Nox isoform to a specific signaling 

pathway has been limited by the lack of isoform-selective inhibitors. The utility of inhibitors 

to gain insight into NADPH oxidase functionality was realized early in the discovery of the 

respiratory burst enzyme, now known as Nox2 oxidase [61,62]. Among the first Nox 

inhibitors to appear in the literature in the late 1980s through the 1990s were small molecule 

iodonium compounds [63,64], apocynin [65], AEBSF [66], S17834 [67], and the peptidic 

inhibitors PR-39 [68]. Soon thereafter, a first-in-class Nox inhibitor was designed to 

specifically inhibit Nox2 [69,70] and named gp91ds-tat, now named Nox2ds-tat, which will 

be discussed in more detail below. At the time of introduction of these early inhibitors to the 

field, other members of the Nox family had yet to be identified. Thus, it is not surprising that 

more thorough investigations of their mechanism of action and specificity since have in most 

cases revealed significant off-target effects.

Some of the characteristics of those early inhibitors have been reviewed previously [71–77]. 

The advent of the discovery of a 7-member family of NADPH oxidases ushered in an 

urgency to find selective inhibitors of each isozyme, be they peptidic or small molecule. It is 

the goal of this review to survey the literature and categorize each identified inhibitor by its 

effects on individual Nox enzymes and perhaps better appreciate the need for isoform 

specificity.
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PEPTIDIC NOX INHIBITORS

The more information that is obtained in terms of the key regulatory regions for assembly 

and activation of the Nox protein and its specific subunits, the more rationally peptidic 

inhibitors can be designed. Below we describe a few promising peptidic inhibitors available 

to date with special emphasis on those which exemplify strategies for inhibition of activity 

and exploit defining characteristics of each of the target enzymes (Fig. 2). Importantly, some 

of these strategies include peptides replicating amino acid sequences within the Nox subunit 

itself, which are pivotal for the assembly of active enzyme (Fig. 2A). Others include 

peptides derived from one of the cytosolic subunits required for activity (Fig. 2B), and 

peptides mimicking regions within the Nox subunit and key to processes such as auto-

inhibition (Fig. 2C). Fundamentally, these rationally-designed inhibitors take advantage of 

intrinsic regulatory interactions of the Nox.

Inhibitors of Nox2

A wealth of information has been amassed over the years by the Pick, Jesaitis and Quinn 

laboratories on the structure and mechanisms associated with Nox2 activation. This is 

attributable largely to the development of peptidic inhibitors, many of which were identified 

using phage display[78,79] and peptide walking [80,81]. A wide spectrum of peptides 

capable of inhibiting Nox2 activity in vitro has been identified based on sequences from 

Nox2 or p47 phox proteins or from p22phox sequences and tested with respect to Nox2 

activity [82]. A small subset of these peptides has been characterized in terms of their 

specificity and await testing of their effectiveness in vitro and in vivo. For detailed analysis 

of these peptides, please refer to outstanding reviews by El-Benna and coworkers [83,84].

PR-39—An endogenous proline-arginine (PR)-rich antibacterial peptide, PR-39 (RRR 

PRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP), was first described as an inhibitor of 

Nox2 based on the knowledge that the assembly of phagocyte NADPH oxidase required 

protein-protein interactions between SH3 domains of one and proline-rich domains (PRDs) 

of other Nox subunits. In fact, as shown by Shi et al. [68], PR-39 inhibited phagocytic Nox2 

in whole cells and in cell-free preparations presumably by binding to SH3-domain in 

p47 phox and interfering with its binding to the PRDs within the C-terminus of p22phox. 

Indeed, PR-39 exerted cardioprotective effects following ischemia reperfusion which often 

involves activation of Nox [85]. However, further analysis demonstrated that this peptide 

could bind to other proteins besides p47phox, including other SH3-containing proteins, 

p130Cas [86] and PI3Kp85α [87]. Thus, careful interpretation of the results obtained using 

PR-39 is required and its use as a Nox2 inhibitor is recommended with consideration of 

potential off-target effects.

Nox2-Based Peptides—A thorough study by Dahan et al. [88] employing peptide 

walking analysis within the dehydrogenase region of Nox2 identified 10 clusters of 

inhibitory peptides that, in turn, helped to define ten functional domains in the C-terminal 

region of Nox2. Two of these domains, 288FWRSQQKVVITKVVT302 (cluster A) 

and 312MKKKG FKMEVGQYIF326 (cluster B), are found in the N-terminal region of Nox2 

dehydrogenase domain. One, 348EDFFSIHIRIVGDWT362 (cluster C), in the ribityl chain-
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binding FAD subdomain. Four clusters overlapped portions of three NADPH-binding 

subdomains, that is peptides 393TASEDVFSYEVVMLV407 (cluster D) and 414TPFAS 

ILKSVWYKYC428 (cluster E) located to the pyrophos -phate-binding subdomain, 

while 432TNLKLKKIYFYWLCR446 (cluster F) and 528PNTRIGVFLCGPEAL542 (cluster 

H) contain residues required for the binding of ribose and nicotinamide moieties of NADPH, 

respectively. Cluster F1 (447DTHAFEWFA455) is contiguous to Cluster F, so it probably 

participates also in the binding of the ribose moiety. Peptide 468RNNAGFLSYNIYLTG482 

(cluster G) corresponds to a region of unknown functional importance. 

Peptide 552SNSESGPRGVHFIFN566 (cluster I) was located in the C-terminal region of the 

enzyme and overlaps with a peptide previously described as binding to p47phox[47]. 

Interestingly, the pep-tides corresponding to FAD- and NADPH-binding regions did not 

exhibit the expected competitive kinetics regarding their respective substrates and were also 

able to inhibit enzymatic activity when added after complex assembly, suggesting a more 

complex mechanism of action. The validity of these peptides as isoform-specific Nox2 

inhibitors remains to be determined since they primarily target regions involved in catalysis 

shared by all members of the Nox family.

Nox2ds-tat—Nox2ds-tat, designed in our laboratory, appears to distinguish itself from 

other peptide inhibitors as the only isoform-selective Nox inhibitor currently available. 

Nox2ds-tat was designed based on data from random-sequence peptide phage display 

showing that peptides corresponding to the B-loop of the Nox2 catalytic core, a short loop 

between helix 2 and 3, exhibited inhibitory activity in cell-free activity assays [79].

This together with the knowledge of a small 9-aa peptide derived from the HIV viral coat 

(HIV-tat) [89] capable of delivering conjugated proteins across membranes, gave rise to the 

design of an 18-mer chimeric peptide, Nox2ds-tat (originally named gp91ds-tat) [70] 

(sequence above; for mechanism of action see Fig. 2A). To date, Nox2ds-tat having been 

used in an array of experimental models to investigate the role of Nox2, appears to be the 

best characterized and most widely-used Nox2-selective inhibitor in the field. From the 

outset, this peptide was shown to be highly efficacious at inhibiting Nox2-derived ROS in 
vitro as well as in vivo [70,90,91] and from then on has been employed in a range of cell and 

animal models of disease. The ROS-generating stimuli that can be blocked by Nox2ds-tat 

include nutrient deprivation [92], hypoxia [93] atrial natriuretic peptide [94] angiopoietin-1 

[95], interleukin-4 [96], shear stress [97], calcineurin inhibitors [98], endothelin-1 [99], 

TNF-α [100], and phenylephrine [101] to name a few. Nox2ds-tat also blocked angiotensin 

II (AngII)-induced superoxide production in human resistance artery smooth muscle cells 

[102] and collagen-induced Nox2 activity in platelets [103]. Furthermore, Nox2ds-tat has 

been applied to elucidate the involvement of Nox2 in various processes leading to function 

and dysfunction of various organ systems, e.g. hypertension [104], diabetes [14], retinopathy 

[93], Alzheimer’s disease [105] and aging [106]. Importantly, the specificity of Nox2ds-tat 

was rigorously tested utilizing heterologous cell-free systems expressing the classical Nox2 

(p22phox, Nox2, p47phox, and p67phox), canonical Nox1 (p22phox, Nox1, NOXA1, and 
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NOXO1), or Nox4 (p22phox and Nox4) oxidases, as well as the non-canonical Nox1 

(p22phox, Nox1, p47phox, and NoxA1) system [107]. The findings demonstrated that 

Nox2ds-tat inhibits the canonical Nox2 system, but not Nox1 (canonical or non-canonical) 

or Nox4-derived ROS production. The IC50 calculated for Nox2 inhibition was 0.74µM, thus 

demonstrating that Nox2ds-tat is a moderately potent, efficacious, and selective inhibitor of 

Nox2. The mechanism of action of Nox2dstat seems to involve binding to p47phox as shown 

by enzyme-linked immunosorbent assay using biotinylated peptide [107].

Inhibitors of Nox1

NoxA1ds—In the past two years another isoform-specific inhibitor of Nox was developed, 

in this case the targeted enzyme being Nox1 [108]. NoxA1ds (NoxA1 docking sequence) is 

a peptide that mimics a putative activation domain of the human Nox1 activator subunit 

NOXA1 homologous to a reported p67phox activation domain that spans amino acids 199–

210 and participates in the catalytic reduction of FAD [48].

With the knowledge that mutagenesis of a tyrosine for an alanine at residue 199 of NoxA1 in 

a region corresponding to the defined “activation domain” of its homolog p67phox reduced 

Nox1-derived superoxide production by >95% [109], it was postulated that the same 

substitution would render a peptide as an effective inhibitor of Nox1 activity. To confer 

specificity, amino acids flanking this putative activation domain (that were not conserved 

between NOXA1 and p67phox) were included. NoxA1ds potently inhibited Nox1-derived 

ROS production in a reconstituted, heterologous Nox1 cell-free system (IC50 = 19 nM), 

displaying no inhibitory effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase activity [108]. 

Further, FRET, FRAP, and competitive binding analyses were consistent with NoxA1ds 

eliciting its effect by binding to Nox1 and thus blocking its interaction with NoxA1 (Fig. 

2B). NoxA1ds significantly inhibited whole HT-29 carcinoma cell-derived ROS and 

hypoxia-induced human pulmonary artery endothelial cell ROS production and migration 

[108]. It seems likely, although it has not been tested, that the unmutated NoxA1 peptide 

could have an inhibitory effect on Nox1 activity. Recently, in an attempt to define the sites of 

interaction between Nox1 and NoxA1, Streeter et al. [110] used a NoxA1-AD peptide 

(LEPMDFLGKAKVV) which corresponds to the rat sequence overlapping NoxA1ds and 

showed interaction of NoxA1 with T429-phosphorylated Nox1 using computational 

modeling. In that study, NoxA1-AD peptide showed higher affinity to a phosphorylated form 

of a Nox1 peptide (KLKTQKIYF) at T429 compared to its non-phosphorylated counterpart.
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Inhibitors of Nox4

Elegant studies by the Knaus and Lambeth laboratories supported key interactions in the 

Nox4 complex that could be exploited as targets [54,57]. A systematic screening of synthetic 

peptides, encompassing various regions on Nox4 protein including B-loop and C-terminus, 

as well as peptides mimicking p22phox regions thought to be essential for activity, yielded no 

inhibitor for Nox4. Thus, similar strategies to those used for peptidic inhibitors of Nox1 and 

2 did not prove successful [111]. Those results could suggest that Nox4 exists in a tightly-

assembled and active conformation which, unlike other Noxs, cannot be disrupted by 

conventional means.

Inhibitors of Nox5

In contrast to Nox1, 2, 3 and 4, Nox5 does not require other membrane-associated or 

cytosolic activator proteins for its activity [34,112] but its activation is mediated by an 

increase in cytosolic Ca2+ concentration acting on EF-hand motifs.

Pep1 and Pep3—In an attempt to investigate how the N-terminal region of Nox5 

containing the EF domain, interacts with its C-terminal catalytic dehydrogenase domain 

(CDHD) leading to activation of the enzyme, Tirone et al. [55] were able to narrow the site 

of interaction to a region between two NADPH binding sites in the C-terminal portion of 

Nox. Interestingly, specific peptides (Pep1 and Pep3) targeting this regulatory calcium-

binding domain of NOX5 were capable of blocking Ca2+-dependent superoxide generation 

in a dose-dependent manner (IC50 = 30 µM).

It is noteworthy that Pep2 and Pep4 interacted very weakly or not at all with the Nox5-EF 

domain, as evidenced by pull-down assays, despite the fact that they overlapped 

substantially with Pep1 or Pep3. In fact, Pep4 and Pep1 differ by only 5 amino acid residues, 

emphasizing the importance of the KDSIT stretch for Nox5-EF/CDHD interaction [55]. 

Although the inhibitory activity of Pep1 and 3 was only tested in Nox5 activity assays, it is 

not expected that they would block the activity of other Noxs due to (a) the absence of EF-

hands; and (b) poor homology of aligned corresponding sequences for Nox 1, 2, 3, and 4 to 

that of Nox5. Still, direct testing of specificity remains to be performed. Purportedly, these 

peptides may represent a site in the catalytic domain of Nox5 that has an auto-inhibitory role 

[55] (Fig. 2C).

Melittin—Melittin is a 26 amino acid peptide (GIGAVLKVLTTGLP ALISWIKRKRQQ) 

derived from bee venom that has demonstrated potent Nox5 inhibition displaying an IC50 of 

101 nM. The binding was shown to be Ca2+-dependent and it seems to act through direct 

binding with the EF-hand domains [112]. Melittin, however, is not specific to Nox5 but also 

binds to other Ca2+-dependent proteins such as calmodulin and troponin C [113].
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Inhibitors of Nox3, DUOX1 and 2

To our knowledge, no peptidic inhibitors have yet been developed to specifically target Nox3 

or DUOX1 and 2.

Afterthoughts

Despite the general potential for specific targeting and effectiveness of biological inhibitors, 

such as peptides, few have entered the clinical pipeline thus far, and none of those are Nox 

inhibitors [114,115]. The use of peptides as potent inhibitors of enzymatic activities raises 

concerns, mainly due to the preconceived notion that peptides lack therapeutic potential due 

to poor oral bioavailability, gut degradation, and toxicity. However, as Dahan & Pick [116] 

elegantly submit, those limitations can be minimized by strategic design and identification of 

appropriate sequences. Then, optimization of peptide ADME (absorption, distribution, 

metabolism, and excretion) properties and means of delivery could circumvent the 

limitations and improve therapeutic use [117]. Some examples of these attempts include 

peptide modifications that provide protection from protease degradation by stapling or 

partial substitution of L-amino acids with their D-isomers [118,119]. In terms of targeted 

peptide delivery, unpublished studies by our group targeting pulmonary diseases, indicate 

that aerosolization of NoxA1ds directly into the nasal passages and lungs, markedly reduces 

right ventricular hypertrophy in rodent models of pulmonary hypertension.

SMALL MOLECULE INHIBITORS

Selective, potent, and efficacious inhibition of Nox isozymes remains a major challenge in 

the discovery of small molecules with potential for progress towards therapeutic 

development. As our understanding of the Nox enzymes improves, we anticipate multiple 

methods of inhibition will become available, thereby opening the door to different classes of 

inhibitors, for example, catalytic core manipulation versus protein assembly inhibition. In 

contrast to peptidic inhibitors the strategy used to identify small molecule inhibitors is 

usually less borne out of rational targeting of protein-protein interactions than it is the high 

throughput screening of small molecules libraries. This requires a careful and thoughtful 

workflow of specific assays and counter screens to select the most specific hits [76,120]. 

Once a hit is identified, random modification of elements of the parent molecule may be 

pursued. Increased use of computational modeling facilitates the rational design of lead 

molecules.

Inhibitors of Nox2

The first group of compounds initially identified as Nox2 inhibitors using a high throughput 

screening strategy were the Vaso-pharm triazolo pyrimidine derivatives, VAS2870 [121] and 

VAS3947 [122]. Interestingly, VAS2870 inhibited superoxide production from cell-free 

Nox2 containing neutrophil system with an IC50 of 10.6 µM [121] and completely abolished 

oxLDL-induced Nox-derived ROS in human umbilical vein endothelial cells (HU-VECs) at 

10 µM [123]. Moreover, the more soluble VAS3947 showed efficacy similar to that of 

VAS2870 in cell-based assays [122]. That said, the VAS compounds are now commonly 

regarded as pan-Nox inhibitors due to their ability to completely inhibit ROS production in 

multiple agonist-induced cell models with varied Nox expression [124,125]. Structurally, 

Cifuentes-Pagano et al. Page 9

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VAS compounds share a central nucleotide core and it is therefore predicted that these 

compounds interact at the level of nucleotide binding, i.e. NADPH or FAD. This would, in 

fact, explain their lack of isoform specificity and also their ability to inhibit the pre-

assembled Nox2 [126]. Recent report have shed light on the negative aspects of using 

VAS2870 as a Nox inhibitor, demonstrating off-target effects through thiol alkylation [127] 

and inhibition of mitochondrial respiration and cytotoxicity [120]. More detailed binding 

and mutagenesis assays are required to fully elucidate the mode of inhibition of VAS 

compounds for Nox2.

Another group of compounds suggested to possess Nox2 inhibiting capabilities are the 

pyrazolopyrimidine compounds [128]. This group of molecules inhibited Nox activity in 

bovine aortic endothelial cell membrane fractions with an IC50 < 1 µM and inhibited 

extracellular superoxide formation by intact PMA-stimulated human neutrophils [126]. 

However, the authors also noted that these compounds failed to produce a decrease in Nox2-

derived superoxide in a reconstituted neutrophil system. Consequently, the mechanism of 

reduced ROS generation was demonstrated via potent inhibition of protein kinase C (PKC)-

βII, a key regulator of p47 phox phosphorylation. Thus, until further information becomes 

available, the use of pyrazolpyrimidine compounds as Nox2-targeted inhibitors should be 

discouraged.

Previously, the triterpenoid celastrol [129] originally referred to as an “antioxidant” was 

demonstrated to potently inhibit both Nox1-derived ROS (IC50 = 0.41 ± 0.20 µM) and 

Nox2-derived ROS (IC50 = 0.59 ± 0.34 µM) following PMA stimulation [130]. While the 

efficacy for both the canonical Nox1 and Nox2 systems was greater than the non-canonical 

Nox1 and 2 systems, the mode of inhibition is demonstrated as disrupting interaction of the 

proline rich region of p22phox and the tandem SH3 domains of either p47 phox or NoxO1. 

Structure-activity relationship (SAR) analogues are anticipated to generate a new class of 

competitive Nox inhibitors acting specifically at the level of p47phox-p22phox vs. NoxO1-

p22phox interface. Whether this potential new class of compounds would discriminate 

between Nox1 vs Nox2 is still unknown.

A new group of Nox2 inhibitors identified to competitively inhibit the p47phox-p22phox 

binding interface are ebselen and its analogues. These compounds were identified utilizing a 

fluorescence polarization-based binding assay [131], as well as traditional ROS read-out 

assays. Importantly, this line of inquiry provides a rigorous methodology for the 

investigation of potential compounds impinging on protein-protein interactions. In the initial 

study, ebselen and some of its analogs were documented as potent Nox2 inhibitors which 

affected Nox1, 4, and 5 activities at a substantially lower potency depending upon the 

congener [131]. One derivative, JM-77b, had a selectivity for Nox2 (IC50= 0.4 µM) 

compared to Nox1 (IC50= 6.3 µM), Nox5 (IC50= 17 µM), and Nox4 (no significant 

inhibition) [131]. This class of compounds appears to hold significant promise for selective 

Nox2 inhibition. Mindful of ebselen’s reported glutathione peroxidase-like activity [132], 

congeners of ebselen found to be devoid of this activity should be of considerable interest.

Naloxone, a commonly-used antagonist of opioid receptors, was previously characterized as 

highly effective in preventing dopaminergic degeneration in different models of rodent 
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Parkinson’s disease by inhibiting inflammation [133]. Importantly, it was shown that 

naloxone binds to Nox2 and blocks translocation of p47 phox to the plasma membrane, thus 

inhibiting ROS generation [134]. Naloxone’s IC50 was in the range of 2µM and inhibited the 

activity of the pre-assembled Nox2 enzyme [134]. However, no reports could be found 

disproving its binding or inhibition of other Nox subunits. Similarly, perhexiline, an 

approved prescription drug for angina, was recently demonstrated to inhibit neutrophilic 

Nox2 with an IC50 of 1.5–3.6 µM as well as in various vascular cells [135]. Importantly, 

perhexiline displayed no scavenging ability or xanthine oxidase inhibition. Its mechanism of 

action and its effect on other Nox isoforms requires further investigation.

Our group recently identified bridged tetrahydroquinolines as specific Nox2 inhibitors based 

on cellular assays employing heterologous Nox1,Nox2, Nox4, and Nox5 expressing systems 

[136]. In this report, compounds 11g and 11h showed selective inhibition of Nox2 in intact 

Cos-Nox2 cells stimulated with PMA (IC50 = 20 ± 1.9 and 32 ± 1.9 µM, respectively). 

Importantly, these compounds were unable to inhibit ROS production by Nox1-, Nox4-, and 

Nox5-expressing cells and exhibited no free radical scavenging or xanthine oxidase 

inhibitory activity. Although limited mechanistic information exists pertaining to their mode 

of inhibition within the current scientific literature, unpublished work employing modeling 

suggests a potential role as assembly inhibitors, acting on the p47phox-p22phox interface. 

That said, there is still considerable work to be done in the way of SAR to enhance potency, 

minimize potential off-target effects, and hence tissue and whole animal toxicity. 

Nevertheless, we contend that compounds 11g and 11h hold significant promise as prototype 

selective small molecule inhibitors of Nox2.

Inhibitors of Nox1

Given the promiscuous nature of the Nox1 oxidase as a canonical- or non-canonical-Nox1 

system which utilizes p47phox, small molecule inhibitors intended for the canonical Nox2, 

p47phox-dependent enzyme could have effects on the non-canonical-Nox1 system (e.g. 

celastrol and ebselen derivatives) [75]. In that regard, a deeper understanding of the Nox1 

activation process and potential distinct p47phox interactions with Nox1 versus Nox2 would 

be advantageous.

ML171 (2-acetylphenothiazine) belongs to a subset of phenothiazines and has an IC50 for 

Nox1 in the submicromolar range from cell-based assays, namely 0.129 µM in HT29 cells 

and 0.25 µM in a HEK293-Nox1 reconstituted cell system [137]. Moreover, the specificity 

of ML171 for other Noxs was reportedly >20-fold higher for Nox2, −3, and 4 as well as for 

xanthine oxidase compared to Nox1[137]. Importantly, the suggested mechanism of action 

surrounding ML171 was interaction with Nox1 catalytic subunit as only over-expression of 

Nox1, and not NoxA1 nor NoxO1, was able to restore the ML171-dependent inhibition of 

ROS generation in HEK293-Nox1-expressing cells [137]. However, by the same reasoning, 

ML171’s potential effect as an allosteric inhibitor of Nox1 at a region distinct from the 

catalytic site could also have been superseded by Nox1 overexpression.

A high-throughput screening (HTS) approach of small molecule libraries and subsequent 

optimization of lead compounds enabled the identification of dual Nox1/4 inhibitors by 

GenKyoTex (GKT) [138,139]. Among these compounds are GKT136901 and GKT137831, 
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which belong to a pyrazolopyridine class of compounds, and are the first orally-active dual 

Nox1 and 4 inhibitors [140–142]. The first compound, GKT136901, was found to be a Nox 

inhibitor with a relatively high degree of potency for both Nox4 (inhibitory constant (Ki) = 

165 ± 5 nM) and Nox1 (Ki =160 ± 10 nM). Similarly, the second compound, GKT137831, 

was shown to be a highly potent inhibitor of both human Nox4 (Ki =140 ± 40 nM) and 

human Nox1 (Ki=110 ± 30 nM). Indeed, these compounds are in phase II trials for the 

treatment of diabetic nephrophathy, which based on animal models, is thought to involve 

Nox4 but not Nox1[143]. One potential cause for concern is that Nox4 has been implicated 

broadly in cell differentiation and physiologic redox signaling and the drug may have 

deleterious effects in non-diseased organs. Additionally, GKT compounds were 

demonstrated to be a viable therapeutic for the treatment of idiopathic pulmonary fibrosis 

and liver fibrosis, both diseases with implicated Nox4 and/or Nox1 contributions [138,140]. 

GKT compounds are to date the best-characterized small molecule Nox inhibiting 

compounds, having been subjected to extensive in vivo screening analysis for off target 

effects, reportedly having favorable ADME profiles as well as being orally bioavailable 

[138,140]. It is expected that the mechanism of action of the GKT compounds could involve 

catalytic core modulation due to the lack of extensive protein assembly in Nox4 (see below). 

GKT compounds only exhibit 10–15-fold higher selectivity for Nox1/4 than Nox2. 

Therefore, consideration of the administration of high doses (>50mg/kg) in vivo [141] 

should be taken as these could obviate selectivity.

As alluded to previously, the inhibitors VAS2870 and VAS3947, considered pan-Nox 

inhibitors, are able to inhibit Nox-derived ROS production in multiple agonist-induced cell 

models.. Consequently, as with the GKT compounds, VAS compounds may interact at the 

level of nucleotide binding due to their lack of isoform specificity and also their ability to 

inhibit the pre-assembled Nox [126]. Further, ebselen and analogues are also predicted to 

inhibit Nox1-derived superoxide, especially when the non-cano-nical-Nox1 system is 

present or the agonist used favors p47phox-dependent Nox1 activation. In a similar vein, 

celastrol, being a recognized assembly inhibitor acting at the level of p47phox/NoxO1 and 

p22phox, potently inhibits Nox1-derived superoxide anion as discussed above.

Inhibitors of Nox3

The current biochemical literature surrounding the activation process of Nox3 remains 

limited. Moreover, the current dogma for cytosolic subunit preference and interchangeability 

of p47 phox for NoxO1 and p67phox for NoxA1 in Nox3 activation renders creation of protein 

assembly inhibitors a challenge. Thus, it is anticipated that the p47phox/NoxO1 class of 

assembly inhibitors e.g. celastrol and ebselen derivatives, could have an effect on Nox3. To 

date, no specific small molecule inhibitors to our knowledge exist for Nox3-dependent 

superoxide production despite its role in balance regulation, otoconia biosynthesis, and 

potentially hearing loss [28]. However, one report did identify a novel synthetic compound, 

3-amino-3-(4-fluorophenyl)-1H–quinoline-2,4-dione (KR-22332) that significantly inhibited 

cisplatin-induced intracellular ROS generation in vitro and was protective against cisplatin-

induced hearing loss in a rat model involving Nox3 ROS production [144]. Since no 

biochemical analysis or modeling was performed, it is not clear if these effects were elicited 

via catalytic inhibition or by other means. Furthermore, ML171 is also able to inhibit Nox3-
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dependent superoxide with an IC50 of 3 µM [137]; and further studies are required to 

determine the effects of other currently-available Nox inhibitors on the Nox3 system. Taken 

together, it is not outside the realm of possibilities that drugs that were designed or screened 

for other Noxs will exhibit an interesting profile of Nox3 inhibition.

Inhibitors of Nox4

To date, Nox4 transcriptional expression remains the most accepted mechanism for 

increased Nox4-derived ROS in cells and tissues [145,146]. Importantly, the interaction 

between Nox4 and p22phox appears to be tightly regulated as peptidic inhibitor strategies 

failed to affect Nox4 activity [111]. Despite this observation, a number of currently available 

inhibitors are reported to potently and effectively attenuate Nox4-derived ROS although 

often via unspecified mechanisms. As mentioned previously (for more detail, see Nox1 

section) GKT compounds represent the first orally-available phase-II clinical trial candidates 

as dual Nox1/4 inhibitors for the treatment of diabetic nephropathy promoted in rodent 

models by Nox4 [147]. Emerging evidence, however, implicates Nox5 in human 

glomerulopathies [148]. These compounds also decrease angiogenesis and tumor volume, 

and improve diabetes-accelerated atherosclerosis, for which Nox1 vs. Nox4 are attributed, 

respectively [149,150].

Similarly, VAS3947, ML171 and celastrol exhibit Nox4 inhibition at higher concentrations 

than their intended Nox1 & 2 targets (see Table 1). Previously, triphenylmethane dyes, such 

as brilliant green and gentian violet, which have chemical characteristic resembling DPI, 

were shown to be potent and efficacious inhibitors of both Nox2 and Nox4 activity [151]. 

Therefore, from a structure-based approach, fulvene and its derivatives were generated as a 

new class of Nox2/4 inhibitors. Importantly, fulvene-5 at 5 µM equally inhibited Nox2 and 

Nox4 in vitro, and when applied in vivo, successfully blocked the growth of endothelial-

mediated tumors in mice [152]. However, since the process of tumor angiogenesis is 

suggested to be a Nox4-driven mechanism, most likely it is the ability of fulvene-5 to inhibit 

Nox4 that confers its efficacy in vivo. This contention is buttressed by studies showing Nox4 

shRNA produces similar effects [152]. That being said, fulvenes should be classified as 

putative inhibitors until which time a mechanism of action is identified and their possible 

role as scavengers can be ruled out. Finally, the recently-identified diarylheptanoid group of 

compounds obtained from edible plants yielded a compound named ACD084, which 

inhibited Nox4 with an IC50 of 3 µM without inhibition of either Nox2 or Nox5 [153]. 

Moreover, while other diaryl-heptanoids inhibited Nox4-derived ROS, they also were also 

capable of inhibiting Nox2. However, limited scavenging analysis was performed on the 

identified compounds and the authors reportedly did not investigate the effects on Nox1-

derived superoxide. While mechanistic information is lacking for the mode on Nox4 

inhibition by ACD084, it is predicted to interfere with nucleotide binding given its ability to 

inhibit ROS production from purified Nox4-dehydrogenase domain samples [153]. It 

remains to be determined whether this could also be true for the other Nox isoforms.

Inhibitors of Nox 5 & DUOXs 1 & 2

Recently, Nox5 has emerged as an attractive target for the development of inhibitors because 

of its potentially distinct and complicating role in humans. The inability to study this 
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isozyme in rats and mice has greatly limited experimental inquiry. However, with enhanced 

procurement and study of human clinical samples, Nox5 is rapidly being viewed as an 

important ROS source in multiple disease settings. Its regulation by calcium binding and EF-

hand domains also offers opportunities for new interventions. As with all Nox family 

members, Nox5 activity is inhibited by the nonselective flavoprotein inhibitor DPI and ROS 

generated by Nox5 can be partially suppressed with apocynin; however, this effect of 

apocynin could be a direct result of scavenging [154]. Ca2+-dependent Nox5 superoxide 

production has also been shown to be inhibited by GKT136901 in spermatozoa (Ki = ~450 

nM; cells in which Nox1 or Nox4 are not detectable [155]), and by GKT137831 in cell free 

assay of Nox5-overexpressing cells [139]. Furthermore, celastrol was also shown to inhibit 

Nox5-derived superoxide in Nox5-expressing cells (IC50 of 3.13 µM) and purified 

membranes containing Nox5 (IC50 of 8.4 µM) [130]. That said, the associated inhibitory 

mechanisms are yet to be revealed. Incidentally, Nox5 contains structural domains not 

present in other members of the Nox family. We therefore anticipate that a target approach 

for its modulation is plausible; for example, melittin (see peptidic inhibitors section) through 

interactions with Nox5-EF-hands provides a potential site for small molecule Nox5 

inhibition [112]. Similar to Nox5, DUOX1 and DUOX2 enzymes are regulated by calcium 

but require the presence of maturation subunits DUOXA1 or DUOXA2, respectively [37], 

and their role in disease and immunity is an emerging area. Accordingly, the modulation of 

DUOX1/2-derived ROS could prove to be an important area of research; however, to date, 

no known inhibitors of DUOX1/2 exist. Finally, DUOX1/2 enzymes also have EF-hand 

regions and, thus like Nox5, could be inhibited by EF-hand-binding small molecules or 

peptides such as melittin.

SUMMARY & LIMITATIONS

The current body of biochemical and medical literature augurs the need for efficacious Nox 

inhibitors and therapies. Importantly, we, like many others in the field, maintain that isoform 

selectivity is essential for disease treatment as well as its practical implications in 

delineating the contribution of a given Nox in physiological redox signaling. The demand 

for well-characterized, isoform-specific inhibitors including pharmacokinetic and 

pharmacodynamic profiles is yet to be adequately met. As shown in Table 1, it has becomes 

quite evident that data for even the most promising Nox inhibitors is, for the most part, 

incomplete as no compounds to our knowledge have been tested against the full array of 

Nox isozymes. Even the few compounds that have IC50s lower by 10–20-fold for a given 

Nox over other family members should be used mindfully in vivo where appropriate doses 

are more difficult to calibrate. Moreover, considerably more work is required to investigate 

mechanism of action. It is also noteworthy that Nox3, as well as Duox1 and Duox2 remain 

poorly characterized Nox targets. This is apparently a consequence of a greater intensity and 

interest in Noxs in mammalian cardiovascular physiology and disease to this point, where 

knowledge of these particular isoforms is limited or lacking. The established role of Nox3 

and the Duoxs in important physiological functions, e.g. hearing and thyroid function, is also 

likely to be an impediment. In conclusion, the purpose and promise of both peptidic 

inhibitors and a handful of small molecules, each with its own advantages and limitations, 

has grown substantively in recent years and is only expected to burgeon further as interest in 
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the Nox field widens. One promising step in the right direction would be employment of 

detailed information that peptide inhibitors provide in terms of protein-protein interactions 

and use of these as pharma-cophores for the design of stable and bioavailable small 

molecules [156].

Acknowledgments

The authors wish to acknowledge Dr. Gabor Csanyi for critical scientific review and Ms. Laura Pliske for editorial 
support during the preparation of this manuscript.

This work was supported by National Institutes of Health grants R01HL079207 and P01HL103455.

Biography

Patrick J. Pagano

REFERENCES

1. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on 
translational and clinical research. Antioxid Redox Signal. 2014; 20:164–182. [PubMed: 23600794] 

2. Harrison IP, Selemidis S. Understanding the biology of reactive oxygen species and their link to 
cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol. 2014; 
41:533–542. [PubMed: 24738947] 

3. Gorin Y, Block K. Nox as a target for diabetic complications. Clin Sci Lond. 2013; 125:361–382. 
[PubMed: 23767990] 

4. Kleikers PW, Wingler K, Hermans JJ, et al. NADPH oxidases as a source of oxidative stress and 
molecular target in ischemia/reperfusion injury. J Mol Med Berl. 2012; 90:1391–1340. [PubMed: 
23090009] 

5. Gao HM, Zhou H, Hong JS. NADPH oxidases: novel therapeutic targets for neurodegenerative 
diseases. Trends Pharmacol Sci. 2012; 33:295–303. [PubMed: 22503440] 

6. Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2010. Natl Vital Stat Rep. 2013; 61:1–117. 
[PubMed: 24979972] 

7. Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and 
disease. Antioxid Redox Signal. 2014; 20:2838–2853. [PubMed: 24093231] 

8. Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular 
disease? Trends Endocrinol Metab. 2014; 25:452–463. [PubMed: 25066192] 

9. Elnakish MT, Hassanain HH, Janssen PM, Angelos MG, Khan M. Emerging role of oxidative stress 
in metabolic syndrome and cardiovascular diseases: important role of Rac/NADPH oxidase. J 
Pathol. 2013; 231:290–300. [PubMed: 24037780] 

10. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases in vascular 
pathology. Antioxid Redox Signal. 2014; 20:2794–2814. [PubMed: 24180474] 

11. Kowluru A, Kowluru RA. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in 
models of glucolipotoxicity and diabetes. Biochem Pharmacol. 2014; 88:275–283. [PubMed: 
24462914] 

12. Landry WD, Cotter TG. ROS signalling, NADPH oxidases and cancer. Biochem Soc Trans. 2014; 
42:934–938. [PubMed: 25109982] 

Cifuentes-Pagano et al. Page 15

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Rodino-Janeiro BK, Paradela-Dobarro B, Castineiras-Landeira MI, et al. Current status of NADPH 
oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag. 2013; 9:401–428. 
[PubMed: 23983473] 

14. Sukumar P, Viswambharan H, Imrie H, et al. Nox2 NADPH Oxidase Has a Critical Role in Insulin 
Resistance-Related Endothelial Cell Dysfunction. Diabetes. 2013; 62:2130–2144. [PubMed: 
23349484] 

15. Cai H, Griendling KK, Harrison DG. The vascular NAD(P;H oxidases as therapeutic targets in 
cardiovascular diseases. Trends Pharmacol Sci. 2003; 24:471–478. [PubMed: 12967772] 

16. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress 
response, stress tolerance, and tissue repair. Pharmacol Rev. 2011; 63:218–242. [PubMed: 
21228261] 

17. Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. 
Antioxid Redox Signal. 2014; 20:2815–2837. [PubMed: 24206089] 

18. Brieger K, Schiavone S, Miller FJ Jr, Krause KH. Reactive oxygen species: from health to disease. 
Swiss Med Wkly. 2012; 142:13659.

19. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-
dependent signalling. Nat Rev Mol Cell Biol. 2014; 15:411–421. [PubMed: 24854789] 

20. Babior BM, Curnutte JT, McMurrich BJ. The particulate superoxide-forming system from human 
neutrophils Properties of the system and further evidence supporting its participation in the 
respiratory burst. J Clin Invest. 1976; 58:989–996. [PubMed: 9426] 

21. Patriarca P, Cramer R, Moncalvo S, Rossi F, Romeo D. Enzymatic basis of metabolic stimulation 
in leucocytes during phagocytosis: the role of activated NADPH oxidase. Arch Biochem Biophys. 
1971; 145:255–262. [PubMed: 4399354] 

22. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and 
pathophysiology. Physiol Rev. 2007; 87:245–313. [PubMed: 17237347] 

23. Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural 
perspective. Biochem J. 2005; 386:401–416. [PubMed: 15588255] 

24. Cross AR, Segal AW. The NADPH oxidase of professional phagocytes-prototype of the NOX 
electron transport chain systems. Biochim Biophys Acta. 2004; 1657:1–22. [PubMed: 15238208] 

25. Pick E. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: 
outsourcing a key task. Small GT Pases. 2014; 5:e27952.

26. Ueyama T, Geiszt M, Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and 
Nox3-based NADPH oxidases. Mol Cell Biol. 2006; 26:2160–2174. [PubMed: 16507994] 

27. Banfi B, Clark RA, Steger K, Krause KH. Two novel proteins activate superoxide generation by the 
NADPH oxidase NOX1. J Biol Chem. 2003; 278:3510–3513. [PubMed: 12473664] 

28. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-
generating NADPH oxidase of the inner ear. J Biol Chem. 2004; 279:46065–46072. [PubMed: 
15326186] 

29. Cheng G, Ritsick D, Lambeth JD. Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol 
Chem. 2004; 279:34250–34255. [PubMed: 15181005] 

30. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue 
expression of Nox3, Nox4, and Nox5. Gene. 2001; 269:131–140. [PubMed: 11376945] 

31. Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H. The NADPH Oxidase Nox3 
Constitutively Produces Superoxide in a p22phox-dependent Manner: its regulation by oxidase 
organizers and activators. J Biol Chem. 2005; 280:23328–23339. [PubMed: 15824103] 

32. Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal 
integrity in vascular smooth muscle cells. Circ Res. 2009; 105:249–259. [PubMed: 19574552] 

33. Nisimoto Y, Diebold BA, Constentino-Gomes D, Lambeth JD. Nox4: a hydrogen peroxide-
generating oxygen sensor. Biochemistry. 2014; 53:5111–5120. [PubMed: 25062272] 

34. Banfi B, Molnar G, Maturana A, et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and 
lymph nodes. J Biol Chem. 2001; 276:37594–37601. [PubMed: 11483596] 

35. Bedard K, Jaquet V, Krause KH. NOX5: from basic biology to signaling and disease. Free Radic 
Biol Med. 2012; 52:725–734. [PubMed: 22182486] 

Cifuentes-Pagano et al. Page 16

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Serrander L, Jaquet V, Bedard K, et al. NOX5 is expressed at the plasma membrane and generates 
superoxide in response to protein kinase C activation. Biochimie. 2007; 89:1159–1167. [PubMed: 
17587483] 

37. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase Evolution of an 
eukaryotic operon equivalent. J Biol Chem. 2006; 281:18269–18272. [PubMed: 16651268] 

38. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce 
reactive oxygen species. FEBS J. 2008; 275:3249–3277. [PubMed: 18513324] 

39. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. 
CardioVasc Res. 2005; 65:16–27. [PubMed: 15621030] 

40. Brandes RP, Weissmann N, Schroder K. Nox family NADPH oxidases: Molecular mechanisms of 
activation. Free Radic Biol Med. 2014; 76C:208–226. [PubMed: 25157786] 

41. Sumimoto H, Hata K, Mizuki K, et al. Assembly and activation of the phagocyte NADPH oxidase 
Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is 
required for activation of the NADPH oxidase. J Biol Chem. 1996; 271:22152–22158. [PubMed: 
8703027] 

42. Meijles DN, Fan LM, Howlin BJ, Li JM. Molecular insights of p47phox phosphorylation dynamics 
in the regulation of NADPH oxidase activation and superoxide production. J Biol Chem. 2014; 
289:22759–22770. [PubMed: 24970888] 

43. Finan P, Shimizu Y, Gout I, et al. An SH3 domain and proline-rich sequence mediate an interaction 
between two components of the phagocyte NADPH oxidase complex. J Biol Chem. 1994; 
269:13752–13755. [PubMed: 8188650] 

44. Hata K, Takeshige K, Sumimoto H. Roles for proline-rich regions of p47phox and p67phox in the 
phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun. 1997; 241:226–
231. [PubMed: 9425254] 

45. Taylor RM, Lord CI, Riesselman MH, et al. Characterization of surface structure and p47phox SH3 
domain-mediated conformational changes for human neutrophil flavocytochrome b. Biochemistry. 
2007; 46:14291–14304. [PubMed: 18004884] 

46. Lapouge K, Smith SJ, Groemping Y, Rittinger K. Architecture of the p40-p47-p67phox complex in 
the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem. 2002; 
277:10121–10128. [PubMed: 11796733] 

47. Nakanishi A, Imajoh-Ohmi S, Fujinawa T, Kikuchi H, Kanegasaki S. Direct evidence for 
interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa 
protein during activation of an O(2-)-generating system in neutrophils. J Biol Chem. 1992; 
267:19072–19074. [PubMed: 1326544] 

48. Han CH, Freeman JL, Lee T, Motalebi SA, Lambeth JD. Regulation of the neutrophil respiratory 
burst oxidase Identification of an activation domain in p67(phox). J Biol Chem. 1998; 273:16663–
16668. [PubMed: 9642219] 

49. Dang PM, Cross AR, Quinn MT, Babior BM. Assembly of the neutrophil respiratory burst oxidase: 
a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci USA. 2002; 
99:4262–4265. [PubMed: 11917128] 

50. Diekmann D, Abo A, Johnston C, Segal AW, Hall A. Interaction of Rac with p67 phox and 
regulation of phagocytic NADPH oxidase activity. Science. 1994; 265:531–532. [PubMed: 
8036496] 

51. Ago T, Nunoi H, Ito T, Sumimoto H. Mechanism for phosphorylation-induced activation of the 
phagocyte NADPH oxidase protein p47(phoxTriple replacement of serines 303, 304, and 328 with 
aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby 
activating the oxidase. J Biol Chem. 1999; 274:33644–33653. [PubMed: 10559253] 

52. Dutta S, Rittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and 
NOXA1. PLoS One. 2010; 5:e10478. [PubMed: 20454568] 

53. Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H. Phosphorylation of Noxo1 at 
threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. 
FEBS J. 2013; 280:5145–5159. [PubMed: 23957209] 

Cifuentes-Pagano et al. Page 17

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Jackson HM, Kawahara T, Nisimoto Y, Smith SM, Lambeth JD. Nox4 B-loop creates an interface 
between the transmembrane and dehydrogenase domains. J Biol Chem. 2010; 285:10281–10290. 
[PubMed: 20139414] 

55. Tirone F, Radu L, Craescu CT, Cox JA. Identification of the binding site for the regulatory calcium-
binding domain in the catalytic domain of NOX5. Biochemistry. 2010; 49:761–771. [PubMed: 
20028137] 

56. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of 
the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH 
oxidase. J Biol Chem. 2004; 279:45935–45941. [PubMed: 15322091] 

57. von Lohneysen K, Noack D, Jesaitis AJ, Dinauer MC, Knaus UG. Mutational analysis reveals 
distinct features of the Nox4-p22 phox complex. J Biol Chem. 2008; 283:35273–35282. [PubMed: 
18849343] 

58. Brandes RP, Weissmann N, Schroder K. Redox-mediated signal transduction by cardiovascular 
Nox NADPH oxidases. J Mol Cell. Cardiol. 2014; 73:70–79. [PubMed: 24560815] 

59. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009; 
47:1239–1253. [PubMed: 19628035] 

60. Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword 
revisited. Annu Rev Pathol. 2014; 9:119–145. [PubMed: 24050626] 

61. Cross AR. Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and 
methods for their elucidation. Free Radic Biol Med. 1990; 8:71–93. [PubMed: 2157636] 

62. Jones OTG, Cross AR, Hancock JT, Henderson LM, O'Donnell VB. Inhibitors of NADPH oxidase 
as guides to its mechanism. Biochem Soc Trans. 1991; 19:70–72. [PubMed: 2037200] 

63. Cross AR, Jones OT. The effect of the inhibitor diphenylene iodonium on the superoxide-
generating system of neutrophilsSpecific labelling of a component polypeptide of the oxidase. 
Biochem J. 1986; 237:111–116. [PubMed: 3800872] 

64. Doussiere J, Vignais PV. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of 
bovine neutrophilsFactors controlling the inhibitory potency of diphenylene iodonium in a cell-
free system of oxidase activation. Eur J Biochem. 1992; 208:61–71. [PubMed: 1324836] 

65. Hart BA, Simons JM, Knaan-Shanzer S, Bakker NP, Labadie RP. Antiarthritic activity of the newly 
developed neutrophil oxidative burst antagonist apocynin. Free Radic Biol Med. 1990; 9:127–131. 
[PubMed: 2172098] 

66. Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E. Inhibition of NADPH oxidase activation by 
4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem. 1997; 
272:13292–13301. [PubMed: 9148950] 

67. Cayatte AJ, Rupin A, Oliver-Krasinski J, et al. S17834, a new inhibitor of cell adhesion and 
atherosclerosis that targets nadph oxidase. Arterioscler Thromb Vasc Biol. 2001; 21:1577–1584. 
[PubMed: 11597929] 

68. Shi J, Ross CR, Leto TL, Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits 
phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl 
Acad Sci USA. 1996; 93:6014–6018. [PubMed: 8650211] 

69. Rey F, Cifuentes M, Quinn M, Pagano P. A competitive inhibitor of NADPH oxidase subunits p47 
(phox) and gp91 (phox) attenuates blood pressure in angiotensin II-infused mice. FASEB J. 2000; 
14:A119–A119.

70. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ. Novel competitive inhibitor of 
NAD(P;H oxidase assembly attenuates vascular O(2-) and systolic blood pressure in mice. Circ 
Res. 2001; 89:408–414. [PubMed: 11532901] 

71. Aldieri E, Riganti C, Polimeni M, et al. Classical inhibitors of NOX NAD(P)H oxidases are not 
specific . Curr. Drug Metab. 2008; 9:686–696. [PubMed: 18855607] 

72. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH. Evolution of NADPH 
Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal. 
2014

73. Cifuentes-Pagano E, Csanyi G, Pagano PJ. NADPH oxidase inhibitors: a decade of discovery from 
Nox2ds to HTS. Cell Mol Life Sci. 2012; 69:2315–2325. [PubMed: 22585059] 

Cifuentes-Pagano et al. Page 18

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Cifuentes-Pagano E, Meijles DN, Pagano PJ. The Quest for Selective Nox Inhibitors and 
Therapeutics: Challenges, Triumphs and Pitfalls. Antioxid Redox Signal. 2014; 20:2741–2754. 
[PubMed: 24070014] 

75. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular 
disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011; 10:453–471. 
[PubMed: 21629295] 

76. Jaquet V, Scapozza L, Clark R, Krause KH, Lambeth JD. Small Molecule NOX Inhibitors: ROS-
generating NADPH Oxidases as Therapeutic Targets. Antioxid Redox Signal. 2009; 11:2535–
2552. [PubMed: 19309261] 

77. Streeter J, Thiel W, Brieger K, Miller FJ Jr. Opportunity Nox: The Future of NADPH Oxidases as 
Therapeutic Targets in Cardiovascular Disease. CardioVasc Ther. 2013; 31:125–137. [PubMed: 
22280098] 

78. Burritt JB, Quinn MT, Jutila MA, Bond CW, Jesaitis AJ. Topological mapping of neutrophil 
cytochrome b epitopes with phage-display libraries. J Biol Chem. 1995; 270:16974–16980. 
[PubMed: 7622517] 

79. DeLeo FR, Yu L, Burritt JB, et al. Mapping sites of interaction of p47-phox and flavocytochrome b 
with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA. 1995; 92:7110–
7114. [PubMed: 7624379] 

80. Joseph G, Pick E. "Peptide walking" is a novel method for mapping functional domains in proteins 
Its application to the Rac1-dependent activation of NADPH oxidase. J Biol Chem. 1995; 
270:29079–29082. [PubMed: 7493930] 

81. Morozov I, Lotan O, Joseph G, Gorzalczany Y, Pick E. Mapping of functional domains in 
p47(phox) involved in the activation of NADPH oxidase by "peptide walking". J Biol Chem. 1998; 
273:15435–15444. [PubMed: 9624128] 

82. Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, Pick E. Mapping of functional domains 
in the p22(phox; subunit of flavocytochrome b(559) participating in the assembly of the NADPH 
oxidase complex by "peptide walking". J Biol Chem. 2002; 277:8421–8432. [PubMed: 11733522] 

83. El-Benna J, Dang PM, Perianin A. Peptide-based inhibitors of the phagocyte NADPH oxidase. 
Biochem Pharmacol. 2010; 80:778–785. [PubMed: 20510204] 

84. El-Benna J, Dang PM, Perianin A. Towards specific NADPH oxidase inhibition by small synthetic 
peptides. Cell Mol Life Sci. 2012; 69:2307–2314. [PubMed: 22562604] 

85. Ikeda Y, Young LH, Scalia R, Ross CR, Lefer AM. PR-39, a proline/arginine-rich antimicrobial 
peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion. Cardio Vasc Res. 
2001; 49:69–77.

86. Chan YR, Gallo RL. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects 
p130(Cas). J Biol Chem. 1998; 273:28978–28985. [PubMed: 9786902] 

87. Tanaka K, Fujimoto Y, Suzuki M, Suzuki Y, Ohtake T, Saito H, Kohgo Y. PI3-kinase p85alpha is a 
target molecule of proline-rich antimicrobial peptide to suppress proliferation of ras-transformed 
cells. Jpn J Cancer Res. 2001; 92:959–967. [PubMed: 11572764] 

88. Dahan I, Molshanski-Mor S, Pick E. Inhibition of NADPH oxidase activation by peptides mapping 
within the dehydrogenase region of Nox2-A "peptide walking" study. J Leukoc Biol. 2012; 
91:501–515. [PubMed: 22184755] 

89. Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc 
Natl Acad Sci USA. 1994; 91:664–668. [PubMed: 8290579] 

90. Jacobson GM, Dourron HM, Liu J, et al. Novel NAD(P)H oxidase inhibitor suppresses 
angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res. 2003; 
92:637–643. [PubMed: 12609967] 

91. Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-
induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 
2003; 23:776–782. [PubMed: 12637340] 

92. Lopes NHM, Vasudevan SS, Gregg D, et al. Rac-dependent monocyte chemoattractant protein-1 
production is induced by nutrient deprivation. Circ Res. 2002; 91:798–805. [PubMed: 12411394] 

Cifuentes-Pagano et al. Page 19

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



93. Al-Shabrawey M, Bartoli M, El-Remessy AB, et al. Inhibition of NAD(P)H oxidase activity blocks 
vascular endothelial growth factor overexpression and neovascularization during ischemic 
retinopathy. Am J Pathol. 2005; 167:599–607. [PubMed: 16049343] 

94. Furst R, Brueckl C, Kuebler WM, et al. Atrial natriuretic peptide induces mitogen-activated protein 
kinase phosphatase-1 in human endothelial cells via Rac1 and NAD(P)H oxidase/Nox2-activation. 
Circ Res. 2005; 96:43–53. [PubMed: 15569826] 

95. Harfouche R, Malak NA, Brandes RP, Karsan A, Irani K, Hussain SN. Roles of reactive oxygen 
species in angiopoietin-1/tie-2 receptor signaling. FASEB J. 2005; 19:1728–1730. [PubMed: 
16049136] 

96. Walch L, Massade L, Dufilho M, Brunet A, Rendu F. Pro-atherogenic effect of interleukin-4 in 
endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant 
protein-1 expression. Atherosclerosis. 2006; 187:285–291. [PubMed: 16249002] 

97. Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NO-mediated regulation of 
NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol. 2006; 576:557–
567. [PubMed: 16873416] 

98. Krotz F, Keller M, Derflinger S, et al. Mycophenolate acid inhibits endothelial NAD(P;H oxidase 
activity and superoxide formation by a Rac1-dependent mechanism. Hypertension. 2007; 49:201–
208. [PubMed: 17101842] 

99. Zeng Q, Zhou Q, Yao F, O'Rourke ST, Sun C. Endothelin-1 regulates cardiac L-type calcium 
channels via NAD(P)H oxidase-derived superoxide. J Pharmacol Exp Ther. 2008; 326:732–738. 
[PubMed: 18539650] 

100. Tarr JM, Ding N, Kaul K, Antonell A, Perez-Jurado LA, Chibber R. Cellular crosstalk between 
TNF-alpha, NADPH oxidase, PKCbeta2, and C2GNT in human leukocytes. Cell Signal. 2012; 
24:873–878. [PubMed: 22182514] 

101. Hahn NE, Musters RJ, Fritz JM, et al. Early NADPH oxidase-2 activation is crucial in 
phenylephrine-induced hypertrophy of H9c2 cells. Cell Signal. 2014; 26:1818–1824. [PubMed: 
24794531] 

102. Touyz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing 
neutrophil-type NAD(P;H oxidase in smooth muscle cells from human resistance arteries 
Regulation by angiotensin II. Circ Res. 2002; 90:1205–1213. [PubMed: 12065324] 

103. Krotz F, Sohn HY, Gloe T, et al. NAD(P)H oxidase-dependent platelet superoxide anion release 
increases platelet recruitment. Blood. 2002; 100:917–924. [PubMed: 12130503] 

104. Ebrahimian T, Li MW, Lemarie CA, et al. Mitogen-activated protein kinase-activated protein 
kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. 
Hypertension. 2011; 57:245–254. [PubMed: 21173344] 

105. He Y, Cui J, Lee JC, et al. Prolonged exposure of cortical neurons to oligomeric amyloid-beta 
impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective 
effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro. 2011; 3:e00050. [PubMed: 
21434871] 

106. Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen species 
mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab. 2007; 
27:1908–1918. [PubMed: 17429347] 

107. Csanyi G, Cifuentes-Pagano E, Al Ghouleh I, et al. Nox2 B-loop peptide, Nox2ds, specifically 
inhibits the NADPH oxidase Nox2. Free Radic Biol Med. 2011; 51:1116–1125. [PubMed: 
21586323] 

108. Ranayhossaini DJ, Rodriguez AI, Sahoo S, et al. Selective recapitulation of conserved and 
nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific 
inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem. 2013; 
288:36437–36450. [PubMed: 24187133] 

109. Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H. A conserved region 
between the TPR and activation domains of p67phox participates in activation of the phagocyte 
NADPH oxidase. J Biol Chem. 2010; 285:31435–31445. [PubMed: 20679349] 

110. Streeter J, Schickling BM, Jiang S, et al. Phosphorylation of Nox1 Regulates Association with 
NoxA1 Activation Domain. Circ Res. 2014; 115:911–918. [PubMed: 25228390] 

Cifuentes-Pagano et al. Page 20

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



111. Csanyi G, Pagano PJ. Strategies Aimed at Nox4 Oxidase Inhibition Employing Peptides from 
Nox4 B-Loop and C-Terminus and p22 (phox) N-Terminus: An Elusive Target. Int J Hypertens. 
2013; 2013:842827. [PubMed: 23606947] 

112. Banfi B, Tirone F, Durussel I, et al. Mechanism of Ca2+ activation of the NADPH oxidase 5 
(NOX5). J Biol Chem. 2004; 279:18583–18591. [PubMed: 14982937] 

113. Comte M, Maulet Y, Cox JA. Ca2+-dependent high-affinity complex formation between 
calmodulin and melittin. Biochem J. 1983; 209:269–272. [PubMed: 6847615] 

114. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 
2013; 81:136–147. [PubMed: 23253135] 

115. Sun L. Peptide-based drug development. Mod Chem Appl. 2013; 1:e103.

116. Dahan I, Pick E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH 
oxidases, or "all that you did and did not want to know about Nox inhibitory peptides". Cell Mol 
Life Sci. 2012; 69:2283–2205. [PubMed: 22562603] 

117. Di L. Strategic Approaches to Optimizing Peptide ADME Properties. AAPS J. 2014

118. Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F. Partial D-amino acid substitution: 
Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc 
Natl Acad Sci USA. 2005; 102:413–418. [PubMed: 15630090] 

119. Walensky LD, Kung AL, Escher I, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled 
BH3 helix. Science. 2004; 305:1466–1470. [PubMed: 15353804] 

120. Zielonka J, Cheng G, Zielonka M, et al. High-throughput assays for superoxide and hydrogen 
peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases. J Biol 
Chem. 2014; 289:16176–16189. [PubMed: 24764302] 

121. ten Freyhaus H, Huntgeburth M, Wingler K, et al. Novel Nox inhibitor VAS2870 attenuates 
PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. CardioVasc Res. 2006; 
71:331–341. [PubMed: 16545786] 

122. Wind S, Beuerlein K, Eucker T, et al. Comparative pharmacology of chemically distinct NADPH 
oxidase inhibitors. Br J Pharmacol. 2010; 161:885–898. [PubMed: 20860666] 

123. Stielow C, Catar RA, Muller G, et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen 
species formation in human endothelial cells. Biochem Biophys Res Commun. 2006; 344:200–
205. [PubMed: 16603125] 

124. Altenhöfer S, Kleikers PM, Radermacher K, et al. The NOX toolbox: validating the role of 
NADPH oxidases in physiology and disease. Cell Mol Life Sci. 2012; 69:2327–2343. [PubMed: 
22648375] 

125. Wingler K, Altenhoefer SA, Kleikers PW, Radermacher KA, Kleinschnitz C, Schmidt HH. 
VAS2870 is a pan-NADPH oxidase inhibitor. Cell. Mol Life Sci. 2012; 69:3159–3160. [PubMed: 
22875281] 

126. Gatto GJ Jr, Ao Z, Kearse MG, et al. NADPH oxidase-dependent and -independent mechanisms 
of reported inhibitors of reactive oxygen generation. J Enzyme Inhib Med Chem. 2013; 28:95–
104. [PubMed: 22136506] 

127. Sun QA, Hess DT, Wang B, Miyagi M, Stamler JS. Off-target thiol alkylation by the NADPH 
oxidase inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870). 
Free Radic Biol Med. 2012; 52:1897–1902. [PubMed: 22406319] 

128. Seno, K.; Nishi, K.; Matsuo, Y.; Fujishita, T. Pyrazolo[1, 5-A]pyrimidine derivative and 
NAD(P)H oxidase inhibitor containing the same. US 2006/0089362. Osaka, Japan: Shionogi & 
Co, Ltd; 2006. 

129. Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C. Celastrol, a potent antioxidant and 
anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsycho 
Pharmacol Biol Psychiatry. 2001; 25:1341–1357.

130. Jaquet V, Marcoux J, Forest E, et al. NOX NADPH oxidase isoforms are inhibited by celastrol 
with a dual mode of action. Br J Pharmacol. 2011; 164:507–520. [PubMed: 21501142] 

131. Smith SM, Min J, Ganesh T, et al. Ebselen and congeners inhibit NADPH oxidase 2-dependent 
superoxide generation by interrupting the binding of regulatory subunits. Chem Biol. 2012; 
19:752–763. [PubMed: 22726689] 

Cifuentes-Pagano et al. Page 21

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



132. Nakamura Y, Feng Q, Kumagai T, et al. Ebselen, a glutathione peroxidase mimetic seleno-organic 
compound, as a multifunctional antioxidant Implication for inflammation-associated 
carcinogenesis. J Biol Chem. 2002; 277:2687–2694. [PubMed: 11714717] 

133. Liu Y, Qin L, Wilson BC, An L, Hong JS, Liu B. Inhibition by naloxone stereoisomers of beta-
amyloid peptide (1–42;-induced superoxide production in microglia and degeneration of cortical 
and mesencephalic neurons. J Pharmacol Exp Ther. 2002; 302:1212–1219. [PubMed: 12183682] 

134. Wang Q, Zhou H, Gao H, et al. Naloxone inhibits immune cell function by suppressing 
superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase. J 
Neuroinflammation. 2012; 9:32. [PubMed: 22340895] 

135. Kennedy JA, Beck-Oldach K, McFadden-Lewis K, et al. Effect of the anti-anginal agent, 
perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol. 2006; 
531:13–19. [PubMed: 16413015] 

136. Cifuentes-Pagano E, Saha J, Csanyi G, et al. Bridged tetrahydroisoquinolines as selective NADPH 
oxidase 2 (Nox2) inhibitors Med Chem Comm. 2013; 4:1085–1092.

137. Gianni D, Taulet N, Zhang H, et al. A novel and specific NADPH oxidase-1 (Nox1; small-
molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. 
ACS Chem Biol. 2010; 5:981–993. [PubMed: 20715845] 

138. Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH 
oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med 
Chem. 2010; 53:7715–7730. [PubMed: 20942471] 

139. Gaggini F, Laleu B, Orchard M, et al. Design, synthesis biological activity of original pyrazolo-
pyrido-diazepine, -pyrazine, -oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. 
Bioorg.Med.Chem. 2011; 19:6989–6999. [PubMed: 22041175] 

140. Aoyama T, Paik YH, Watanabe S, et al. Nicotinamide adenine dinucleotide phosphate oxidase in 
experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology. 2012; 
56:2316–2327. [PubMed: 22806357] 

141. Gray SP, Di Marco E, Okabe J, et al. NADPH oxidase 1 plays a key role in diabetes mellitus-
accelerated atherosclerosis. Circulation. 2013; 127:1888–1902. [PubMed: 23564668] 

142. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by 
GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012; 53:289–296. 
[PubMed: 22618020] 

143. Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase 
nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol. 2014; 
25:1237–1254. [PubMed: 24511132] 

144. Shin YS, Song SJ, Kang SU, et al. A novel synthetic compound, 3-amino-3-(4-fluoro-
phenyl)-1H–quinoline-2,4-dione, inhibits cisplatin-induced hearing loss by the suppression of 
reactive oxygen species: In vitro and in vivo study. NeuroScience. 2013; 232:1–12. [PubMed: 
23246618] 

145. Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of 
NADPH oxidases in the cardiovascular system. Circ Res. 2012; 110:1364–1390. [PubMed: 
22581922] 

146. Serrander L, Cartier L, Bedard K, et al. NOX4 activity is determined by mRNA levels and reveals 
a unique pattern of ROS generation. Biochem J. 2007; 406:105–114. [PubMed: 17501721] 

147. Thallas-Bonke V, Jha JC, Gray SP, et al. Nox-4 deletion reduces oxidative stress and injury by 
PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol Rep. 2014; 2:e12192. 
[PubMed: 25367693] 

148. Holterman CE, Thibodeau JF, Kennedy CR. NADPH oxidase 5 and renal disease. Curr Opin 
Nephrol Hypertens. 2015; 24:81–87. [PubMed: 25415612] 

149. Garrido-Urbani S, Jemelin S, Deffert C, et al. Targeting vascular NADPH oxidase 1 blocks tumor 
angiogenesis through a PPARalpha mediated mechanism. PLoS One. 2011; 6:e14665. [PubMed: 
21326871] 

150. Vendrov AE, Madamanchi NR, Niu XL, et al. NADPH oxidases regulate CD44 and hyaluronic 
acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol 
Chem. 2010; 285:26545–26557. [PubMed: 20558727] 

Cifuentes-Pagano et al. Page 22

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



151. Perry BN, Govindarajan B, Bhandarkar SS, et al. Pharmacologic blockade of angiopoietin-2 is 
efficacious against model hemangiomas in mice. J Invest Dermatol. 2006; 126:2316–2322. 
[PubMed: 16741507] 

152. Bhandarkar SS, Jaconi M, Fried LE, et al. Fulvene-5 potently inhibits NADPH oxidase 4 and 
blocks the growth of endothelial tumors in mice. J Clin Invest. 2009; 119:2359–2365. [PubMed: 
19620773] 

153. Kofler PA, Pircher H, von Grafenstein S, et al. Characterisation of nox4 inhibitors from edible 
plants. Planta Med. 2013; 79:244–252. [PubMed: 23345167] 

154. Heumuller S, Wind S, Barbosa-Sicard E, et al. Apocynin is not an inhibitor of vascular NADPH 
oxidases but an antioxidant. Hypertension. 2008; 51:211–217. [PubMed: 18086956] 

155. Musset B, Clark RA, DeCoursey TE, et al. NOX5 in human spermatozoa: expression, function, 
and regulation. J Biol Chem. 2012; 287:9376–9388. [PubMed: 22291013] 

156. Scognamiglio PL, Di Natale C, Perretta G, Marasco D. From peptides to small molecules: an 
intriguing but intricated way to new drugs. Curr Med Chem. 2013; 20:3803–3817. [PubMed: 
23895692] 

Cifuentes-Pagano et al. Page 23

Curr Pharm Des. Author manuscript; available in PMC 2016 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. (1). 
Sites of interaction among Nox subunits.
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Fig. (2). 
Mechanism of action of peptidic inhibitors.
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