46 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Quantitative PET imaging with hybrid MR-PET scanners

    Get PDF
    This work deals with the quantification of PET images with the new hybrid imaging technology of MR-PET. Data correction methods have been developed and implemented, allowing for quantification and improvement in image quality. Procedures already available have been adapted and optimised. An implementation of the correction procedures together with the image reconstruction and the calibration is provided for the 3T and 9.4T MR-BrainPET hybrid scanners. A detailed evaluation of the correction procedures as well as the quantification of the entire workflow have been performed. With this, quantitative PET imaging in phantom studies and also in human studies with simultaneous MR-PET is possible

    Effects of Magnetic Fields of up to 9.4 T on Resolution and Contrast of PET Images as Measured with an MR-BrainPET

    Get PDF
    Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the 'grey matter' compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and 'grey/white matter' ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field

    Long term quantitative stability of the MR compatible BrainPET insert

    No full text

    High-resolution, quantitative 3D PET image reconstruction for the Siemens hybrid 3T MR/BrainPET scanner using the PET reconstruction software toolkit (PRESTO)

    No full text
    The Siemens 3T MR-BrainPET scanner allows us to simultaneously acquire high-resolution MR and PET images thus giving a strong asset for studies of the human brain. Meanwhile, the system is routinely used for MR-PET studies with a variety of radiotracers, e.g. 18F-FDG, 18F-FET, 11C-Raclopride, 11C-Flumazenil, 15O-Water. Based on the vendors’ sinogram-based reconstruction, quantitative dynamic images are obtained. However, this reconstruction uses compressed data in terms of span (axial) and mash (transaxial). Avoiding such data reduction strategies is desirable to improve the image quality. In this context, the PET Reconstruction Software Toolkit (PRESTO) provides better image quality in terms of resolution and noise at the expense of increased computational effort. For the first time, an accurate quantification with PRESTO has been achieved by integrating all mandatory data corrections. All data corrections are calculated for LORs individually and passed to the OP-OSEM implementation of PRESTO. The corrections comprise: component-based normalisation, template-based attenuation correction, variance-reduced random correction, scatter correction based on Single Scatter Simulation, dead time/pile up correction, decay correction and system calibration. In this way, the reconstructed images provide calibrated time-activity (TA) values (Bq/cc). Comparisons between TA curves (TAC) from the sinogram-based reconstruction and PRESTO show reproducible values within a few percent for all available tracers. Exemplarily, Figure 1 compares the brain tumor dynamics for a scan with FET. No significant deviations are observed in the TACs. However, the better SNR becomes evident for PRESTO (Figure 2). Consequently, the hybrid 3T MR-BrainPET has emerged as an excellent tool for a wide spectrum of PET studies of the human brain due to the continuous improvements, which have successfully addressed the issues of quantification, optimising image quality and workflow
    corecore