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Universitätsprofessor Dr. rer. nat. N. Jon Shah
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Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.





Kurzfassung

Diese Arbeit behandelt die quantitative PET Bildgebung mit MR-PET

Hybridtomographen. Dabei wurden verschiedene Korrekturverfahren

zur Quantifizierung und zur Verbesserung der Bildqualität entwick-

elt und implementiert. Verfahren, die bereits verfügbar waren, wur-

den angepasst und optimiert. Eine Implementierung der Korrekturen

zusammen mit der Bildrekonstruktion und anschließender Bildkalib-

rierung wurden für die 3T und 9,4T MR-BrainPET Hybridtomografen

bereitgestellt. Eine detaillierte Evaluierung der Korrekturen sowie die

quantitative Bewertung des Gesamtverfahrens wurden durchgeführt.

Damit ist die Quantifizierung der PET-Bilder in Phantomstudien und

letztlich auch Humanstudien mit simultanem MR-PET möglich.

Abstract

This work deals with the quantification of PET images with the new

hybrid imaging technology of MR-PET. Data correction methods have

been developed and implemented, allowing for quantification and im-

provement in image quality. Procedures already available have been

adapted and optimised. An implementation of the correction proce-

dures together with the image reconstruction and the calibration is

provided for the 3T and 9.4T MR-BrainPET hybrid scanners. A de-

tailed evaluation of the correction procedures as well as the quantifica-

tion of the entire workflow have been performed. With this, quantita-

tive PET imaging in phantom studies and also in human studies with

simultaneous MR-PET is possible.
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1. Introduction

Positron emission tomography (PET) is a powerful non-invasive imaging modality

in nuclear medicine. It allows quantitative imaging of biochemical processes in

vivo. Applying the tracer principle, PET offers the advantage of bio-compatible

tracers and the relatively short half life of the positron emitting isotopes. Com-

bined with the unchallenged sensitivity of PET scanners and the availability of

correction methods for physical effects and measurement imperfections, a excel-

lent image quality and quantification as well as a low radiation dose for the patient

can be achieved. Quantitative PET refers to the accurate spatial and temporal

representation of the radioactivity distribution within the subject. This includes

image homogeneity within the entire field of view and quantitative accuracy for

all measured activity concentrations. The knowledge of accuracy and limitations

of the measurement are also crucial. A second aspect of quantitative PET is the

modelling and quantification of metabolic processes to parametric images, which

is, however, beyond the focus of this work [19].

Although PET shows metabolic processes in detail, it is often demanding to as-

sign these findings to the corresponding anatomical structures, especially when

highly specific tracers are applied. Therefore, the use of complementary anatomi-

cal imaging such as x-ray computed tomography (CT) is highly desirable. Today,

the combination of CT with PET is clinically established [100]. However, a draw-

back of combining PET and CT is the additional radiation dose of the CT scan,

particularly for children and young adults. Furthermore, the soft-tissue contrast

of CT images is limited, compared to magnetic resonance imaging (MRI). Besides

various anatomical contrasts MRI provides functional information, such as perfu-

sion, diffusion, spectroscopy, angiography, and brain activity. A combination of

PET and MRI offers many advantages in pre-clinical research and clinical applica-

tions, especially in neuroscience. In contrast to PET/CT, where the image volumes

are acquired sequentially, an integrated hybrid PET/MR allows the simultaneous

acquisition of the same volume, for instance the human brain. A second effect

is the potential shortening of the measurement time, compared to the approach

with subsequent scans. Although preferable, the integration of PET and MRI in

1



CHAPTER 1. INTRODUCTION

one system is technologically challenging. Mutual interference of both systems has

to be minimised. Dedicated MR compatible PET detector technology and proper

shielding have to be used in order to avoid electromagnetic interaction. Further-

more, the information needed for photon attenuation correction, which is derived

from transmission scans in standalone PET imaging or from CT scans in PET/CT

imaging, has to be derived from the MR images in hybrid PET/MR [39].

In 2008, a hybrid MR-BrainPET scanner developed by Siemens Healthcare for hu-

man application has been delivered to the Forschungszentrum Jülich. The Brain-

PET component offers a high image resolution [37] and is especially advantageous

in this respect compared to whole body scanners. By combining versatile MR

imaging with imaging of PET tracers the BrainPET allows for a detailed analy-

sis of, for example, brain tumours and of neuro-degenereative disorders, such as

Alzheimer’s disease, Parkinson’s disease and others. The aim of this work is the

quantification of PET images acquired with the simultaneously measuring MR-

BrainPET which was not guaranteed by the manufacturer of the scanner. The

quantitatively accurate representation of activity concentration in the image has

to be achieved within the entire field of view of the PET scanner. Dynamic ef-

fects at variable countrates and activity distributions within the scanner have to

be described and corrected. Furthermore, the new aspect of MRI interference on

PET imaging has to be considered. The entire imaging process has to be evaluated

regarding the quantitative accuracy. All these procedures are implemented in a

workflow, routinely applicable for human studies.

In this work, Chapter 2 provides a short introduction of the principles of PET

and Chapter 3 gives an introduction on MR imaging. The upcoming research on

hybrid MR-PET imaging is introduced in Chapter 4. Besides, the hybrid MR-

BrainPET scanner is presented and characterised. Methods have been designed

in order to characterise the interference of simultaneous MRI on PET images. In

Chapter 5, the design, optimisation and evaluation of methods and procedures for

quantification of PET images are described. Tools for scatter simulation and image

reconstruction, which are vendor provided, have been evaluated and included in

the procedure. The tools for deadtime and pileup-correction have been envolved

and combined with the component-based normalisation. Moreover, a correction

method for the MRI interference of certain MR sequences on PET imaging has been

developed and implemented. The complex interplay of methods is described in the

section “Workflow and Implementation”. Chapter 6 includes the evaluation of

the overall image quality and quantification accuracy in different phantom studies

applying several isotopes. The long term system stability is examined to ensure

2



CHAPTER 1. INTRODUCTION

comparability of images in studies with a duration of weeks and months. The

application of the entire procedure on simultaneous MR-PET studies on human

subjects is evaluated in Chapter 6.2, where examples from clinical human studies

performed with the 3T MR-BrainPET are demonstrated. The discussion of the

presented results is given in Chapter 7, followed by the conclusions and outlook

on future developments in Chapter 8.

3



2. Basics of Positron Emission

Tomography

During the last four decades nuclear medicine technology has developed different

devices for molecular imaging. Molecules are labelled with a radionuclide and ad-

ministered to the patient for the visualization of normal and diseased metabolism

and physiology. The decaying atomic nuclei emit - possibly after intermediate

steps - high energy photons. These photons are recorded by dedicated detector

systems and processed to two or three dimensional images showing the distribu-

tion of the labelled molecules within the patient. Depending on the decay mode,

different instruments are available. Gamma cameras allow for 2D planar scintigra-

phy, whereas Single Photon Emission Computed Tomography (SPECT) and PET

provide 3D tomographic images. Besides imaging of the spatial radiotracer distri-

bution, temporal dynamic of tracer uptake can be evaluated as a parameter.

2.1. Historical Overview

The beginning of radionuclide imaging goes back to the 1940s when a scanner

for point-wise rectilinear sampling of a defined matrix was introduced. In 1953,

the gamma camera, or Anger scintillation camera, was described and is still the

basis of modern gamma cameras and SPECT systems. First suggestions towards

PET and SPECT were made in the 1960s by Kuhl and Rankowitz. However, due

to insufficient computational power and reconstruction algorithms at that time,

its realisation was not achieved until more than a decade later. Nuclear tomo-

graphic imaging machines benefited from the improvement of computer systems

and the introduction of CT by Cormack and Houndsfield in the 1970s. To realize

SPECT, a gamma camera was mounted on a gantry allowing for rotation around

the patient. Later on, two or three gamma cameras were used to improve sensitiv-

ity. In parallel to the development of SPECT, first PET devices were introduced.

PET applies electronic collimation instead of lead collimators, which increases the

sensitivity dramatically. A further advantage is the application of bio-compatible

4



CHAPTER 2. BASICS OF POSITRON EMISSION TOMOGRAPHY

radiotracers with short half lifes, such as water labelled with 15O. Progress in de-

tector technology, data processing and reconstruction procedures have resulted in

a continuous quality improvement in nuclear imaging. Advances in detectors and

instrumentation technology permit the combination of different imaging modali-

ties. SPECT/CT has been introduced in the early 1990s by Hasegawa et al. [34]

and PET/CT in the early 2000s by Townsend et al. [13]. In this way the spe-

cific strengths of both, anatomical and functional imaging are combined. Whereas

PET/CT and SPECT/CT are already in clinical use, hybrid scanners combin-

ing MRI and PET are just being introduced. Even before the introduction of

PET/CT, first developments towards combined PET/MRI were done, driven by

the idea of resolution enhancement of PET measurements at high magnetic fields

[44, 80, 79]. A first hybrid PET-NMR scanner has been realized by Hammer and

Christensen [32], followed by a first single slice PET scanner mounted within the

RF coil of the MR scanner [92]. Early designs applied a guiding of scintillation

light via optical fibres to detectors located outside of the strong static magnetic

field. The drawback was a reduced timing and energy resolution of the measured

events. However, a first pre-clinical PET/1.5T MR scanner applying this approach

was developed [21, 58]. With the development of non-magneto sensitive silicon

based photodetectors, integrated hybrid PET/MRI scanners for simultaneous ac-

quisition of PET and MRI became possible. A prototype of integrated PET/MRI

small animal scanners combining a 7T MRI and a PET insert has been realised

[74]. Furthermore, designs applying the fast SiPMs in pre-clinical MR-PET have

also been presented and realised [90, 108]. Also the possibilities of RF shielding

have been steadily improved [27].

The first human hybrid MR-PET scanner constructed by Siemens consisted of

a prototype of a dedicated head scanner BrainPET and a slightly modified 3T

MAGNETOM Tim Trio [30, 88, 16]. Such a prototype was installed at the

Forschungszentrum Jülich in 2008 [37], where a second BrainPET detector can

be operated within a 9.4 T human MR scanner. Meanwhile, whole body hybrid

MR-PET systems are commercially available: The 3T MR scanners combined

with a PET scanner are the sequential Philips Ingenuity TF [38] and the simul-

taneous Siemens mMR [112]. While enhancing the technology of one modality in

PET/MRI, it has to be ensured that interference and influences of the comple-

mentary modality is kept at a minimum. Currently, the development of hybrid

MR-PET instrumentation and methods is an active field in research and engineer-

ing [91, 106].
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2.2. Physics of PET

2.2.1. Radioactive Decay

Radioactivity of naturally appearing radioisotopes has been discovered by Bequerel

in 1896. Thereby an unstable or metastable nucleus transforms into a more stable

configuration of protons and neutrons and releases energy by emission of particles

and/or radiation. In this process the mass is converted into energy according to

Einstein’s mass-energy equivalent with conservation of energy, mass, momentum

and charge. The sum of rest masses of all particles involved is reduced. Hereby, the

transition energy, which corresponds to the energy-equivalent of the difference in

rest mass, is often transferred as kinetic energy to emitted particles or is converted

into photons. The stability of the nucleus depends on the ratio of the number

of neutrons and protons. Spontaneous radioactive decay is a quantum mechani-

cal phenomenon. It can be described statistically by the transition probability of

an excited nucleus to a more stable one per time unit. In quantum mechanics it

is expressed by the transition amplitude and the decay operator. Furthermore,

the nucleus wave functions at the initial state and the final state contribute to

this relationship. In general, the decay probability depends on quantum mechani-

cal quantities and is independent of macroscopic quantities, such as temperature,

pressure or external fields. Different radioactive decay modes are known and are de-

nominated in temporal order of their discovery α-, β- or γ-decay. The α-radiation

consists of a helium nucleus (4He2+) and is rather unimportant in molecular imag-

ing, because of its very limited penetration depth and hazardous interaction with

living tissue. The β-decay is subdivided into three different modes.

i) β−-decay, a neutron (n) is converted into a proton (p) by emission of an

electron (e−) and an antineutrino (ν̄);

ii) β+-decay, a proton is converted into a neutron by emission of a positron (e+)

and a neutrino (ν);

iii) Electron Capture (EC) converts a proton into a neutron by capturing an

electron mostly from the inner shell emitting a neutrino;

Whereas β+ -decay is crucial for PET, EC is a competing decay mode to positron

emission and for quantitative PET imaging. The so called branching factor (BF)

as the ratio of β+ modes to the total number of decays corrects for this effect. The

existence of the positron has been predicted by Dirac in 1928 and experimentally

6



CHAPTER 2. BASICS OF POSITRON EMISSION TOMOGRAPHY

proved by Anderson in 1932. The existence of the neutrino has been postulated

by Pauli in 1933 already, but the experimental detection has not been realised

until 1953. The basic theory of the β-decay has been explained by Fermi in 1934,

taking into account the weak interaction, stating that atomic nuclei with a low

ratio of neutrons to the sum of neutrons and protons in respect to the nearest

stable nucleus are likely to undergo β+-decay.

For a sample with only one radionuclide, the average decay rate is a specific param-

eter. The activity and the number of residual radioactive nuclei N in the sample

are decreasing exponentially over time. The kinetics of decay is described by

dN

dt
= −λN, (2.1)

leading to

N(t) = N(t0)e−λt, (2.2)

A(t) = A(t0)e−λt with λ =
ln2

T1/2

. (2.3)

The macroscopic activity concentration A(t) at a certain time t has decreased

from the initial activity A(t0) since the time t0 according to Equation 2.3. Conse-

quently, the half-life T1/2 defines the period of time during which half of the atoms

have undergone radioactive decay [22]. Since a decay event occurs spontaneously

and independently from other decay events, the actual number of decaying atoms

per time unit fluctuates about an expected mean value λ. This is of vital im-

portance in counting experiments, such as PET imaging, especially in short term

measurements. The statistics is described by the Poisson distribution, where the

probability P for n decay events occurring within a defined time interval ∆t is

P (n,∆t) =
(λ∆t)n

n!
e−λ∆t. (2.4)

with λ again denoting the expected number of decays during the time interval

∆t. For an experiment with n detected events, the best estimator can be given as

n±
√
n, with the uncertainty

√
n [22].

2.2.2. Interaction of Positrons with Matter

The interaction of charged particles, such as positrons and electrons, differs from

that of electromagnetic radiation. Whereas charged particles have a reduced pene-

tration depth compared to uncharged particles (also referred to as non-penetrating
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radiation), high energy photons may travel longer distances within tissue and ma-

terials (referred to as penetrating radiation). In the following, both types of inter-

action are described.

The energetic positron is emitted from the nucleus and it may undergo interactions

while passing through the surrounding matter and dispensing its kinetic energy.

In general, the form of interaction of charged particles with matter depends also

on its kinetic energy. A measure for the probability of interaction are the effective

cross section σ as an integral of the differential cross section dσ
dΩ

. The resulting

effects for the particle are changes in direction of motion and energy. Basically,

four different types of interaction of positrons with matter are distinguished:

• Multiple elastic scattering (Rutherford scattering)

• Ionization, inelastic scattering

• Annihilation

• Bremsstrahlung

The Rutherford scattering of a charged particle in the Coulomb field of the atomic

nucleus is an elastic scattering. The cross section for small angles is much higher

and the total scattering angle results from the sum of all scatter events during

transition of a medium. For a large number of single scatter events, the central

limit theorem describes a Gaussian distribution of the angle. In contrast, during

inelastic scattering, the charged particle transfers larger fractions of its kinetic

energy. In case of positron emission, the positron transfers its energy to the shell

electrons of surrounding atoms. As a consequence, the atom is excited or ionized.

The mean transfer of energy from a particle transitioning the material is given by

the Bethe-Bloch equation. When nearly at rest, the positron and an electron may

annihilate immediately or previously form a metastable positronium with a mean

lifetime of approximately 10−7s before annihilation. The mass-energy equivalent of

the electron-positron system is given by the two rest masses 2me and is converted

into two 511 keV photons (Figure 2.1).

For electron-positron pairs with no kinetic energy the two photons leave the an-

nihilation site back to back due to momentum conservation. In cases, the kinetic

energy is finite, so that the angle varies by about ± 0.5◦ full-width at half maxi-

mum (FWHM) around the ideal angle of 180◦. This acollinearity is one physical

reason for degradation in image resolution in PET. The cross section of annihi-

lation is low for high kinetic energy and increases after the inelastic scattering of
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Figure 2.1.: Positron decay of an 18F atom to 18O and annihilation of the emitted

positron with an electron.

the positron. This may rupture chemical bindings and thus cause biological haz-

ard to living tissue. Bremsstrahlung does not play a dominant role for standard

positron emitters applied in PET. However, Bremsstrahlung affects image quality

tremendously, for example imaging the isotope 90Y.

2.2.3. Positron Range

The interactions of ionization, Bremsstrahlung and annihilation limit the physi-

cally possible image resolution in PET. The positron range depends on the kinetic

energy of the positron and the density of the surrounding matter. Typical mean

ranges for PET radio nuclides in water which has similar attenuation properties as

soft tissue are given in Table 2.1. The positron range poses a fundamental limit of

the achievable image resolution in PET. For positron emitters with a high positron

energy and consequently a lower achievable image resolution, the advantages of the

application of a strong external magnetic field becomes evident. In this respect

ultra high field MR/PET has the potential of improving PET image resolution in

image planes perpendicular to the main magnetic field [36, 44], (Figure 2.2).

2.2.4. Non-pure Positron Emitters

A favourable property of standard positron emitters, such as 18F, is their short

half life leading to a low radiation dose for the patient. Furthermore, no other

high energy photons are emitted during the decay (see Figure 2.3(a)). How-
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PET Radionuclides

Nuclide Half life Positron Max. positron range Avg. positron range

Energy in water in water
15O 2.04 min 1740 keV 8.0 mm 1.80 mm
11C 20.39 min 970 keV 3.8 mm 0.85 mm
18F 109.77 min 640 keV 2.2 mm 0.46 mm
13N 9.97 min 1200 keV 5.0 mm 1.15 mm

68Ga 67.63 min 1900 keV 9.0 mm 2.15 mm

Table 2.1.: Main properties of commonly used PET isotopes [76].

ever, for imaging of slow biological processes a longer half life may be desirable.

Non-standard positron emitters such as 120I or 86Y with half lifes of 4.2 days and

14 hours, respectively, are available. Also 68Ga is applied in human studies. For

quality control, 68Ge/68Ga filled cylinders are used, with a rather complex decay

scheme (see Figure 2.3(b)) [95]. A drawback of non-pure positron emitters are

additional single photons, emitted practically simultaneously with the positrons,

leading to instrumental challenges such as additional detector deadtime and the

need for an accurate energy discrimination. The resulting effects may be a re-

duction of image quality and quantitative accuracy. An unfavourable property of

many non-standard positron emitters can be a much larger positron range before

annihilation, resulting in a further decrease of image resolution (see Figure 2.2).

2.3. Interactions of Photons with Matter

Annihilation photons escaping from the subject under study are detected by in-

teractions with the detector material. Two mechanisms for interaction of 511 keV

photons with matter are relevant for PET, the photoelectric effect and the Comp-

ton effect. These effects have to be well understood, since they may compromise

the image quality and quantification when they occur within the field of view. On

the other hand they are fundamental mechanisms for event detection within the

scintillator.
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(a) 120I-filled Iida brain phan-

tom at 0 T.

(b) 120I-filled Iida brain

phantom at 9.4 T.

(c) 18F-filled Iida brain phan-

tom at 3 T.

Figure 2.2.: Effect of magnetic fields on positron range in reconstructed images.

The isotope with a high positron range shows a clear improvement

at 9.4 T (b) compared to 0 T (a). Image quality is degraded due to

additional gammas of the 120I. The image of the 18F-filled phantom at

3 T is depicted for comparison (c).

2.3.1. Photoelectric Effect

The photoelectric effect describes the absorption of a photon by an atomic bound

electron, mostly from an inner K shell and at lower photon energies. The in-

teraction leads to the ejection of the involved electron from the atom while the

photon’s energy is passed to the electron. Due to the momentum conservation

the photoelectric effect can only occur with atomic electrons where the nucleus

acts as a third collision partner and takes the recoil momentum. Therefore, the

cross section is particularly high for electrons in the inner most K shell due to the

proximity to the atomic nucleus. Subsequent to the release of an electron from an

inner shell, secondary effects may occur. The missing electron’s place may be filled

by an electron from an outer shell, leading to a cascade of x-ray emissions with

energy of the x-rays as given by Moseley’s law. Another form of interaction is the

Auger effect where the energy is passed to another electron of the same atom. If

that energy is sufficient the electron may escape from the atom [22].

2.3.2. Compton Scatter

Compton scatter is the dominating effect of interaction of photons with energies

from 100 keV to 10 MeV with electrons or other charged particles. The scattering
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(a) Decay Scheme of 18F (b) Decay Scheme of 68Ge/68Ga

Figure 2.3.: Decay schemes of 18F (a) as a pure positron emitter and 68Ge/68Ga

(b) decaying with additional gamma lines.

of 511 keV photon on free or weakly-bound electrons decreases its energy. This pro-

cess is a strict electron-photon interaction. In contrast to the photoelectric effect,

the photon’s energy cannot be transferred completely to the electron and a less

energetic photon is emitted after the scattering process. The amount of transferred

energy depends on the scattering angle of the photon and can be derived from the

conservation of energy and momentum. The cross section for the corresponding

energies is derived from the Klein-Nishina formula. The main relation between

angle and energy, where Θ is the scattering angle and Eγ is the photon energy,

is described by the Equations 2.5 and 2.6. When the photon scatters within the

subject to scan, this effect is an important source for degradation of contrast in

reconstructed PET images. Scattering of the photon within the detector material

is the dominating mechanism to determine the position and energy of incidence.

Taking into account the different materials, different scatter properties have to be

considered. In the living subject, mainly soft tissue and bone have to be distin-

guished, whereas the MR head coil, the patient bed and other devices may cause,

but also absorb scattered events. The energy of the photon E
′
ν and the kinetic

energy of the recoil electron E
′
e after interaction read

E
′

γ(Θ) =
Eγ

1 + Eγ
mec2

(1− cos(Θ))
(2.5)

and

E
′

e(Θ) = Eγ − E
′

γ(Θ) = Eγ(1−
1

1 + Eγ
mec2

(1− cos(Θ))
, (2.6)
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respectively. Due to the fact that photons with a larger deflection Θ have lost a

higher amount of energy, a larger fraction of scattered photons may be detected by

scanners with high energy resolution. Consequently, these events can be excluded.

2.4. PET Instrumentation

A PET scanner is a detection device for photon pairs originating from annihilation

events after a β+-decay. It is applied in medical diagnostics, therapy control and

clinical research. The relatively high energy of 511 keV results in low absorption

probability in a scanned subject compared to the usually lower-energetic radionu-

clides used in SPECT. However, due to the lower cross section for interaction with

matter the detection of 511 keV photons becomes more challenging. Typically,

thousands of crystals are mounted on rings around the subject to determine the

moment of incidence, energy and position of one annihilation photon. The detec-

tors are driven in coincidence mode to define a unique crystal combination with

fixed geometry, referred to as line of response (LOR) or tube of response (TOR), as

drafted in Figure 2.6(a). An annihilation event is detected when two photons with

the energy of 511 keV are detected simultaneously by the two detectors. Here, the

term simultaneously is defined by the coincidence time window, which is in the

range of approximately 3 to 12 ns, depending on the detector technology, the ob-

ject size and the diameter of the field of view (FOV). The minimal timing window

is given by the time that a photon needs to travel along the inner diameter from

any point of annihilation to any detector. For time of flight (TOF) PET, the time

difference between the detection of the two events can be evaluated in order to

render the point of annihilation more precisely [56, 47]. However, this requires dif-

ferent algorithms for image reconstuction and a sophisticated detector technology.

In a typical PET scan, millions of coincidence events originating from the decay of

the positron emitter are detected, providing information on the projection of the

actual tracer distribution. Several hardware components are necessary in order

to detect the annihilation photons and acquire coincidence data. The PET in-

strumentation in combination with the radiotracer principle makes PET a highly

sensitive device for metabolic imaging.

2.4.1. Radiotracer Principle

The tracer principle has been introduced in 1912 by de Hevesy and is the most

fundamental principle in nuclear medicine [26, 25]. Radioactive elements have
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identical chemical properties compared to the non radioactive isotopes. Therefore,

they may be used to trace biochemical processes in living subjects. Substances

labelled with radionuclides are referred to as radiotracers or radiopharmaceuticals.

Usually, one or more stable atoms of a molecule are replaced by an unstable or

metastable radioactive analogue. This may be either a radioisotope of the atom

(for instance replacement of 12C by 11C in order to generate 11C-glucose) or a

chemical analogue (e.g. replacement of hydroxyl group OH by 18F in a glucose

analogue). The most widely used PET radionuclides are 11C and 18F with half

lifes of 20 min and 109 min, respectively. 11C requires a cyclotron near the site of

radiotracer production because of its fast radioactive decay. As an advantage, a

short half-life of the radioactive tracer reduces the potentially harmful effects of

radiation significantly due to the shorter exposition time. After its administra-

tion by injection or inhalation the radiotracer is involved in metabolic processes

within the body and allows for functional analysis. The radionuclide within the

subject decays and emits gamma photons which may be recorded by the detector.

This provides information about the radiotracer’s spatial and temporal distribution

within the patient’s body. Due to the unchallenged sensitivity of nuclear imaging

devices, only very low amounts, i.e. tracer amounts, of the labelled molecules need

to be administered. Consequently, the metabolic processes are not influenced or

disturbed by the radiotracer. The applied positron emitters are produced by a

cyclotron which uses a high energy proton beam of usually 4 MeV up to 30 MeV

to bombard target atoms, for example 18O for the production of 18F. For clinical

studies, the requirements on radiochemistry are rather demanding. Production and

quality control of tracers with high purity and specific activity have to be realized,

taking into account the short half lifes of PET isotopes (see Table 2.1). In order

to achieve clinical relevance, a fast chemistry for synthesis of the radiopharmacon

and also a fast quality control have to be realised.

When scanning living subjects the biochemical processes, such as uptake and ex-

cretion, lead to additional half lifes, referred to as biological half life, in the specific

areas. This is the large field of tracer kinetic modelling. The total half live, how-

ever, can be written as

1

Th
=

1

Th,biol
+

1

Th,phys
. (2.7)

The instrumentation treats only the physical half life, while the biological half life

is treated by the tracer kinetic modelling. However, for noise considerations and

estimations the overall half live is an important figure. In contrast to SPECT,
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where 99mTc is the dominating radiotracer, PET applies mostly biocompatible

radiotracers. The short half lifes, which are a infrastructural drawback with regard

to the maximal distance to cyclotrons, are advantageous for the patient due to the

lower radiation doses.

2.4.2. Scintillators

Most imaging devices in nuclear medicine apply scintillation detectors. Scintilla-

tion crystal materials convert high energy photons into photons with a character-

istic spectrum in the visible or ultra violet range. This light may than be detected

by photodetectors and converted into an electrical signal for further processing. To

provide good information about the incident gamma, several scintillator properties

are desirable which, however, are partly excluding each other. The dominating

properties of clinical detector systems in molecular imaging are sensitivity and

localisation accuracy, besides timing properties, energy resolution and costs. Nu-

merous scintillation materials are available with different properties, qualified for

different applications (see Table 2.2). Ideally, the number of scintillation photons

in a scintillator is directly proportional to the energy deposited in the scintillation

material. To assure high sensitivity, a high conversion efficiency of the incident

photon energy into scintillation photons is crucial. With increased stopping power

of the crystal, more photons at the expected energy range are stopped and cause

scintillation light within the crystal. Therefore, the density of the crystal material

and the length of the crystal are critical, since longer crystals increase the sensitiv-

ity but on the other hand increase the parallax error and reduce the localisation

accuracy. Transparency of the crystal to its own scintillation light is relevant to

allow for an efficient detection and a high light yield. The dominant effect of inter-

action between a photon of 511 keV and the crystal lattice is the Compton effect.

As described in Section 2.3.2, its probability increases with the material’s atomic

number. Annihilation photons that undergo Compton scattering within the crystal

deposit mostly only a small fraction of their energy at a single interaction. This

energy ranges from zero to a maximum value and causes the Compton edge in

the spectrum. The scattered annihilation photon, however, may also escape from

the crystal. In all cases the absorption process creates an energetic electron which

is able to move through the crystal and to interact with other atomic electrons.

Finally, it leads to the disposal of scintillation light. A major mechanism for ab-

sorption of the photon within the crystal is the photoelectric effect, which becomes

more dominant at lower energies, i.e. after single or multiple scatter events of the
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photon within the crystal. Here, the photon is completely absorbed depositing

all its energy in the crystal. Most likely, this energy is absorbed entirely by the

crystal, resulting in the photo peak of the spectrum. In case of incomplete absorp-

tion, e.g. the x-ray photon escapes from the crystal without being detected, the

assumed photon energy is reduced.

Figure 2.4.: Schematics of a typical energy spectrum in PET. The events found

between LLD (lower level discriminator) and ULD (upper level dis-

criminator) are assumed to belong to the photopeak. Events with

lower energy are assumed to be scattered and events with higher en-

ergy are assumed to have undergone pulse pile-up. Both, scattered

and pile-up events are rejected.

Furthermore, the annihilation photon may pass the crystal without any interac-

tion but may be back scattered from the shielding or the glass envelope of the

photodetector or the optical coupling. If the scattering angle is relatively high the

scattered photon may end up back in the crystal. These photons then have a signif-

icantly lower energy and are represented by the backscatter peak of the spectrum

(see Figure 2.4). In case when the Compton interactions and the photoelectric

absorption occur within the same detector block, the energy of the gamma photon

may be computed correctly, otherwise it will be rejected by the electronics. These

effects are more likely at corner and edge crystals of detector blocks, manifesting

themselves in lower sensitivity [105].

The design and the scanner geometry as well as the scintillator material, size

and type of photodetector influence the performance of the scanner essentially.
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Different figures of merit direct the optimal application for the scintillator material.

A small decay constant of the scintillator is important for timing resolution and

thus a high countrate performance. A high light yield and a high linearity is crucial

for the energy resolution of the photon, and thus for separation of scattered and

unscattered photons (see Figure 2.4). Besides a good geometrical coupling, which

is achieved by an optical coupling, the optimal matching of wavelength to the

photodetector is important to exploit the functional light output of the crystal

and to avoid back reflection into the crystal.

Scintillation material may possess also intrinsic background activity. The today

widely used cerium doped lutetium oxy-orthosilicate (Lu2SiO5:Ce, LSO:Ce) pos-

sesses a background activity due to the natural abundance of 176Lu with 2.6% with

approximately 300 Bq/cm3. LSO produces gamma rays at 89, 202 and 307 keV

[60, 61].

Finally, the scintillator has to be selected for the specific application. Important

properties of commonly used scintillation materials NaI (sodium iodine), CsI (cae-

seum iodine), BGO (bismuth germanate), LSO (lutetium oxy-orthosilicate) and

LYSO (lutetium yttrium oxy-orthosilicate) are listed in Table 2.2.

PET Scintillator Materials

Material Density Decay Time Photon Yield Peak emission Main

(g/cm3) (ns) (keV−1) (nm) Application

NaI:Tl 3.6 230 44 415 SPECT

CsI:Tl 4.5 1000 52 540 SPECT

BGO 7.1 300 8 480 PET

LSO:Ce 7.4 40 26 420 PET

LYSO 7.1 41 27 397 PET

Table 2.2.: Scintillator materials with their main properties and the preferred

application.

2.4.3. Photodetectors

Photomultiplier The photomultiplier tube (PMT) is a device capable of detec-

tion and amplification of very weak light signals. It generates an electric output

signal which is proportional to the incoming optical photons. The device is used

widely in nuclear medicine and its properties are well known and understood. It
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consists of an evacuated glass tube with photocathode, subsequentially arranged

dynodes, and an anode. The photocathode is located at the entrance window of

the PMT which is optically matched with the scintillation crystals. Photons pene-

trating the cathode surface eject electrons from the material via the photoelectric

effect, where the number of electrons is proportional to the number of incident

photons. The conversion efficiency from photons into electrons is referred to as

quantum efficiency (QE) or photon detection efficiency (PDE). The amplification

of the electric signal is performed by dynodes which are electrodes with a positive

voltage relative to the previous stage. Electrons ejected from the photocathode are

accelerated towards the first dynode due to the positive voltage of 200 to 400 V.

Each electron is then capable of ejecting several secondary electrons from the dyn-

ode, resulting in an avalanche effect along the cascade of dynodes, giving an overall

amplification factor of 104 to 107. The electrons reaching the anode produce an

amplified current pulse which is proportional to the amount of incoming light.

PMTs require a stable high-voltage supply to achieve a stable amplification factor.

Since the focusing of the electrons towards the dynodes is sensitive to even low

external electro-magnetic fields, PMTs are often shielded for magnetic fields by

metal foils. This property makes the PMTs not applicable in integrated hybrid

MR-PET scanners [81].

Avalanche Photodiodes Avalanche photodiodes (APD) have been introduced

in PET imaging insead of PMTs for the design of hybrid MR-PET scanners. The

main advantages are the compact geometry and the non-magneto sensitivity, so

that they can be applied within MRI scanners. Furthermore, they require low

currents and have a high quantum efficiency (QE) of up to 90 % compared to the

25 % of the PMTs.

The device is a silicon-based semiconductor containing a pn junction, which con-

sists of a positively doped p region and a negatively doped n region. These diodes

provide an amplification by the generation of electron-hole pairs from an energetic

electron resulting in the avalanche effect of electrons in the substrate. Low ener-

getic photons, as produced by the scintillator, enter the diode and pass through

the silicon dioxide layer. Depending on the semiconductor material, the sensitivity

to the photons depends on the photon’s energy. Thus, the scintillator and the

APD have to be matched.

The produced electrons travel through the n and p layers before entering the de-

pletion region. In the depletion area free electron-hole pairs are excited, which

migrate to cathode and anode, respectively. Applying a reverse bias voltage and
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illuminating the crystal junction between the p and n layers, a current proportional

to the number of photons incident on the junction is measurable. The design of

APDs shows a relatively thin depletion layer, giving rise to a very steep local elec-

trical field across the junction, resulting in a reduced sensitivity to magnetic fields.

In operation, high reverse-bias voltages in the range of 500 V are applied across the

device. With increasing bias voltage, electrons generated in the p layer continue to

increase in energy as they undergo multiple collisions with the crystalline silicon

lattice. This avalanche effect of electrons results in electron multiplication similar

to the mechanism occurring in one of the dynodes of a PMT, but with relatively

low gains between 200 to 1000. Besides the degraded SNR, the APDs have rather

poor timing properties.

Another drawback of APDs is the dependency of dark current as a function of

the bias voltage. Furthermore, APDs are highly temperature dependent, which

may cause stability problems in terms of linearity. As consequence, PET detectors

applying APDs have to appropriately control the temperature. Besides, APDs are

sources of RF noise and have to be shielded in order to prevent the MR signal

from noise pickup [75].

Silicon Photomultiplier Silicon photomultipliers (SiPM) are also silicon-based

devices, sensitive to single photons. They consist of APD-arrays operating in

Geiger mode on a silicon substrate. With dimensions of each single APD of 20

to 100µm, a density of 1000 APDs/mm2 is achieved. The APDs are coupled by

silicon quenching resistors. The microcells are read in parallel leading to output

signals within a dynamic range from a single photon to 1000 photons/mm2 of

sinsitive area on the device. The supply voltage is APD technology specific and

typically varies between 25 V and 90 V, thus being 1 to 2 orders of magnitude

lower than the voltage required for traditional PMTs or conventional APDs. With

a total QE of about 20 – 30 % and a gain of approximately 105 to 106, these values

are similar to a traditional PMT. In contrast to APDs, the timing jitter of SiPMs

is optimised to have a photon arrival time resolution of about 100 ps, making

the device capable of TOF. Most important for application in MR-PET systems,

the signal parameters are practically independent of external magnetic fields and

the small dimensions permit extremely compact and robust mechanical design of

detector modules [81, 85, 110]. Drawbacks are here the high dark currents resulting

in a certain dark countrate and the limited dynamic range. The possibility of

direct coupling of the crystal to the photodetector is advantageous for the image

resolution in PET.
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Photodetectors in PET

Detector PMT APD SiPM

Dimensions large small small

Amplification 106 − 107 102 − 103 105 − 106

SNR very high low high

QE 20% 60% 30%

Bias Voltage 800-1500 V 100-200 V 25-90 V

MR compatible no yes yes

Table 2.3.: Main properties of the photodetectors PMT, APD and SiPM applied

in PET.

2.4.4. Detector Design

The PET detector front-end usually consists of several detector rings, which are

mounted around the patient bed. The subunits are panels or cassettes housing the

detector blocks with the main components, i.e. scintillation crystal, photodetector

and pre-processing electronics.

(a) Schematics of a PET detec-

tor block.

(b) Schematics of the Anger

logic of a detector block.

(c) Position profile mea-

sured with a detector block

of the BrainPET (12 × 12

crystals).

Figure 2.5.: Schematics of a PET detector block with an 8 × 8 crystal array and

photo detector (a). Schematics of the Anger logic with a 3 × 3 APD

array (b), as applied in the BrainPET. The measured position profile

of a detector block (c).
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Global parameters that influence the image quality are

• timing resolution,

• energy resolution,

• sensitivity,

• homogeneity and

• capability of processing high countrates.

The output signal of the photodetector is amplified and pre-processed in sub-

sequent steps. The first level of qualification is the determination, whether the

temporal integral of the signals exceeds a certain noise level. A threshold is de-

fined which is referred to as the constant fraction discriminator (CFD). An event

passing this level is called a CFD single event. The CFD single event’s energy is

further analysed to be within a defined window between LLD (low level discrimi-

nator) and ULD (upper level discriminator). Low energy indicates that the event

has undergone Compton scatter and has not been fully absorbed, whereas a high

energy indicates a multiple single within a very short time period (pile-up). Only

events within the applied energy window are accepted and referred to as energy

qualified events. Generally, the number of crystals in a detector block is larger

than the number of photodetectors. The Anger logic (Figure 2.5(b)) allows the

localisation on the detector crystal and is applied in most SPECT and PET de-

tectors. This logic is based on a weighting scheme of signals originating from the

photodetectors. As a result the position of the impinging photon is determined by

the ratio of the 4 signals si (with i = A,B,C,D) see Figure 2.4.4

X =
A+D

E
and Y =

A+B

E
. (2.8)

The energy E is the sum of all 4 signals si(t) integrated over time according to

E =
∑

i=A,B,C,D

∫ te

ta

si(t)dt. (2.9)

The position and energy qualified single event is taken into account for coincidence

search. In non-ideal detectors, the produced pulses have a finite length during

which the detector is not able to accept further events. This effect is referred to

as deadtime. Dedicated front-end ASICs (Application Specific Integrated Circuit)
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with high countrate performance and low power consumption are applied. Espe-

cially if applying temperature dependent APDs and SiPMs, the heat dissipation

of the front-end electronics is a concern [108].

The parallax effect is related to the penetration depth and the transfer of photons

into adjacent crystals. A photon impinging on a crystal matrix oblique to the pho-

tons’s propagation path may deposit its energy in more than one crystal, resulting

in a wrong assignment of the crystal of incidence. Efforts to increase the spatial

resolution result in shorter crystals and block geometries [45]. The combination

of smaller crystals with the Anger Logic principle for determination of the pho-

ton’s position and energy leads to higher probability of mis-assignment of events

to crystals.

(a) True coincidence detection. (b) Random coincidence detection.

Figure 2.6.: Example of a true (a) and random (b) coincidences.

2.4.5. Coincidence Detection

Passing all these steps of assessment, the energy and position qualified single event

is forwarded to the coincidence search. If two qualified singles are detected within

the defined timing window, they are assumed to originate from one annihilation

event along the LOR between these two detectors (see Figure 2.6(a)). Since the

direction of coincidence is well defined and scattered events are assumed to be

eliminated, the events are already collimated and no further collimator, as applied

22



CHAPTER 2. BASICS OF POSITRON EMISSION TOMOGRAPHY

in SPECT, is needed. This aspect is referred to as electronic collimation and

increases the PET sensitivity tremendously compared to SPECT. Also 3D PET

has a superior sensitivity to 2D PET, where septa are applied between adjacent

detector rings. To exploit the high timing resolution of the detector blocks at

system level a careful timing calibration has to be performed [3].

2.4.6. Scattered Events and Energy Resolution

Most photons travelling from the point of annihilation towards the detector un-

dergo Compton scattering at material located within the FOV. This may be tissue

of the patient himself, i.e. bone or soft-tissue, but may also be devices used, such

as the MR RF coil during hybrid MR-PET measurements or shielding (see Figure

2.7(a)). As described in Subsection 2.3.2 the photon loses energy as a function

of the scattering angle. In order to accept only photons with reasonable image

information, the energy resolution has to be as good as possible. Depending on

the energy resolution of the detector, the events with large scattering angles can be

rejected. However, a significant fraction of scattered events remains in the acquired

data and has to be considered by correction methods.

(a) Scattered coincidences. (b) Effect of photon absorption.

Figure 2.7.: Example of a scattered (a) and an absorbed (b) coincidence. The

effect of attenuation is mainly due to scattered coincidences that were

not detected in the correct LOR but also, less frequent due to photon

absorption.
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2.4.7. Random Coincidences

Two qualified single events originating from different annihilation events can be

accidentally recorded by the scanner within the defined coincidence window and

may be detected as a coincidence. In this case they are denominated as a random

coincidence. The random coincidence rate for a specific LOR is related to the prod-

uct of the single event rates detected by the crystals defining that LOR. Random

coincidences occur homogeneously across the FOV and add a homogeneous back-

ground folded with the sensitivity to the reconstructed image (see Figure 2.6(b)).

This leads to an overestimation of tracer distributions and reduction in image

contrast if not corrected appropriately.

Figure 2.8.: Example of corrections in the reconstructed images. Leftmost image

(a) is not corrected for attenuation and scatter, the middle image

(b) not corrected for scatter but for attenuation, and the rightmost

image (c) is fully corrected. All images are corrected for randoms and

normalisation.

2.4.8. Multiple Coincidences

Multiple coincidences are related to random coincidences and occur when more

than two qualified singles are detected within the timing window. In this case,

the LOR cannot be uniquely determined. Depending on the scanner firmware the

treatment may differ. One policy is the definition of the two photons with the

highest detected energy as the coincidence. Due to the relatively small likelihood

of this event, the scanner may reject all singles involved in a multiple coincidence.

2.4.9. Normalisation

It has to be ensured that all LORs joining detectors in coincidence have the same

effective sensitivity. Hereby, variations in the geometric sensitivity as well as the
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crystal efficiency have to be compensated. The normalisation accounts for low

frequency inhomogeneities in the image, in case of sensitivity gradients along the

patient axis as well as high frequency artefacts caused by sentivity patterns among

the detector block.

2.4.10. Deadtime and Event Overlap

The deadtime τ is the time that a detector needs to process an incoming event,

while no further event can be processed. Assuming that the events do not interfere,

the process can be described by the Poisson distribution. With increasing activity,

the probability of at least two events occurring within the time period τ increases.

When an event cannot be processed because it arrives during the processing time

of the previous one, but it does not prolong the deadtime of the detector, the

deadtime is assumed as non-paralysable. Increasing the countrate, the actually

detected countrate reaches the maximum 1/τ asymptotically. If an impinging

event prolongs the deadtime, the actually measured countrate can also decrease

with increasing activity. In non-ideal systems the deadtime behaves as a mixture

of both special types. However, in modern architectures, the non-paralysable effect

dominates at countrates relevant for human studies.

2.5. Data Organisation and Image Reconstruction

2.5.1. Data Organisation of the BrainPET Scanner

As described earlier, a coincidence event is an event in one LOR connecting two

detector crystals. The geometric properties of an LOR can be defined by radial

offset r, view angle φ in 2D, and in 3D additionally by the axial offset z, and

azimuthal angle θ of a defined coordinate system relative to the scanner.

LOR Histogram The LOR histogram is a data format for the temporally inte-

grated coincidences measured in every crystal combination. Consequently, the bins

for the combination of detector heads can be respresented as headpairs (see Figure

2.9). It contains spatially uncompressed data and is the basis for LOR reconstruc-

tion [86, 46], avoiding additional loss of information due to sinogram binning and

compression.
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Figure 2.9.: LOR histogram: Illustration of one of the 304 headpairs. Here the

coincidences measured in the crystal combinations of all 864 crystals

of head 0 with all 864 crystals with the oblique opposed head 9 are

displayed. The structure of the 6× 6 blocks is visible.
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Hitmap A detector hitmap contains the counts for every single crystal on the

detector. For prompts or delayeds coincidence hitmaps (PCMAP or DCMAP, re-

spectively) the bin value for each of the two crystals involved in a coincidence

is increased by one. Usually, these maps are considered for daily Quality Con-

trol (dailyQC) purposes. The DCMAP is also the basis for variance reduction on

randoms, as described later. Figure 2.10 contains the measured prompt coinci-

dences from a point source. The unrolled BrainPET detector map represents the

32 cassettes with each 6 detector blocks, containing a 12 × 12 crystal matrix.

Figure 2.10.: Detector hitmap of the BrainPET scanner. The map shows the un-

rolled detector map with its 32 cassettes, containing 6 blocks each,

with a 12× 12 LSO-crystal matrix. The data represent an off-centre

positioned point source.

Sinogram The widely used sinogram is a compressed data format for coincidence

data, which can be used directly for image reconstruction. The horizontal lines

contain a projection set of the emission data from one single view. With this

arrangement of data, a point source is represented as a sinusoidal curve, as can be

seen in the measured sinogram in Figure 2.11.

Listmode File Standard data acquisition with the BrainPET is performed in

listmode. A listmode file contains all information on prompt and random coinci-

dences, together with block single counters, such as CFD, XYE and qualified single

counters. Time marks with a high temporal resolution are inserted (every 200 µs

for the BrainPET) for the offline framing of the listmode data. With dedicated

I/O interfaces on the hardware it is possible to insert further trigger data, e.g. for

tagging the start of MRI sequences with the same temporal accuracy as the event

decoding.
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Figure 2.11.: Sinogram of a measured point source. The gap structure of the Brain-

PET’s geometry is clearly visible.

Image An image in nuclear medicine is a matrix of discrete values, representing

the estimate of the tracer distribution within the FOV. The standard reconstructed

image for the BrainPET stores the intensity values in a matrix with 256 × 256

pixel transaxially and 153 image planes. The assigned voxel size is 1.25 mm3.

This format is referred to as flat format and has no further header information.

Therefore, the ECAT7 format is used, which can store information on the patient

and study. Additionally, their format is capable of storing multiple frames, as

required for dynamic studies. The DICOM format is a powerful format used in

many image applications and a standard in MRI. For dynamic PET, however, the

ECAT7 is currently the more conventient solution.

2.5.2. Image Reconstruction

Two basic approaches for PET image reconstruction exist to obtain images from

the acquired projection data. The analytic reconstruction is computationally fast

and straight-forward with well known properties. However, it has the drawback of

poor noise properties, which is a major issue in clinical scans.

Iterative reconstruction is computationally demanding, but offers a more elabo-

rated noise handling, due to a more accurate modelling of the imaging process

and the entire system response. Image reconstruction is crucial also for quantifica-

tion, since the correction factors have to be considered correctly according to the

selected model.
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Analytic Image Reconstruction

Analytic reconstruction algorithms assume the emission data to be ideal, which

is an oversimplification of the underlying physics of the measurement process.

Prior to the reconstruction, the acquired data need to be corrected for random

coincidences, deadtime, scatter, attenuation and the varying crystal efficiencies.

For a long period of time, filtered backprojection (FBP) has been the standard

reconstruction algorithm applied in PET.

The information on the exact position of annihilation along the LORs is not avail-

able. Thus, a constant value along the LOR is assumed. An essential step in

analytic reconstruction is the backprojection of the measured data from the pro-

jection space into image space. By superposition of the Fourier transforms of all

backprojections the result equals the Fourier transform of the image, weighted or

filtered with the inverse distance from the origin in Fourier space. In this way, the

reconstructed image suffers from an oversampling of the centre of the Fourier trans-

form, which amplifies low frequencies and attenuates high frequencies. The result

is a blurred version of the measured distribution. In order to compute the tracer

distribution from the projections, the filtered backprojection (FBP) is available.

The projection data are filtered with a ramp filter before backprojection, which

implies a pre-correction for the aforementioned central oversampling in frequency

space. Originally, filtered backprojection was defined only in 2D, but has been ex-

tended to 3D space. The line integral along the activity distribution f(x, y) under

a certain angle φ and radial offset xr is a projection p. Equation 2.10 is referred

to as the Radon transform. Its inversion is subject to image reconstruction.

p(xr, φ) =

∫ ∞
−∞

f(x, y)dyr (2.10)

Besides the lower computational burden, the high linearity of this reconstruction

method is advantageous, not only for estimating performance parameters of the

scanner (such as image resolution). However, the FBP is defined for complete

projection data. For scanners exhibiting gaps in the detector geometry such as

the Siemens HRRT or the BrainPET scanners, iterative methods are mandatory

to handle the incomplete projection data [17].

Iterative Image Reconstruction

In PET the iterative reconstruction approach is superior to the analytical methods

due to a more realistic modelling of the imaging system [93, 43]. A more general
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formulation of the statistical measurement and reconstruction process may improve

the accuracy of the image reconstruction. Models for iterative image reconstruction

usually consist of five components:

• Model of the Image Space

• Model of the Measurement Process

• Model of the Projection Data

• Objective Function

• Optimization Strategy

Usually, approximations have to be made to keep the method practical with regard

to computational effort. The image space is subdivided into a grid of I discrete

voxels, where the estimated image intensity values xi with i=1...I, represent the

assumed distribution of the actual tracer concentration λ(r). Most algorithms

apply pixel basis functions b(r) that are constant within small, non-overlapping

rectangular regions arranged in a Cartesian grid according to

λ(r) =
J∑
j=1

λibj(r). (2.11)

Since xi is the realisation of a Poisson random process, the likelihood P for the

number of actually emitted events k, when λ events were expected, is

P (xi = k) = e−λ · λ
k

k!
with k ∈ N. (2.12)

The number of predicted events yj contained in one of the J LORs j is described

by

ŷj =
I∑
i=1

ai,jxj, (2.13)

for a discretised activity distribution in the image space. The coefficients aij con-

tain the probabilities that an annihilation in image element i is seen by the LOR j.

Equation 2.13 describes the forward projection of the data. However, the detected

number of events ŷi may differ from the expected ones E[yi], especially during

short acquisition times, which results in additional noise (Equation 2.12). Since xi

30



CHAPTER 2. BASICS OF POSITRON EMISSION TOMOGRAPHY

represents the realisation of independent statistical Poissonian random processes,

their linear combination is also Poissonian

E[yj]
!

= ŷj =
I∑
i=1

ai,jλj. (2.14)

However, the assumption that the detection of coincidences is independent of other

detections is only valid for negligible deadtime and pile-up at lower countrates [111].

With this assumption, the likelihood P is modelled by a Poisson random variable

p(y|λ) =
J∏
i=1

e−ŷi
ŷi
yi

yi!
. (2.15)

This relation can be transferred to the likelihood function L(x) or respectively to

the log-likelihood function l(x), which is easier to handle. Combining the data

model with the image model, the reconstruction problem can be described by a

set of linear equations with the elements of the system matrix A with its elements

aij. The system matrix A is a main component of the model of the measurement

process. This matrix connects the unknown activity distribution λ within the FOV

with the expected number of events detected within each LOR E[y]

E[y] = Aλ. (2.16)

Besides the geometric detection probabilities, aij can contain also multiplicative

effects of probabilities for attenuation, normalisation and deadtime. For an ac-

curate modelling of additive noise such as random coincidences R and scattered

coincidences S, the expectation may be formulated as

E[y] = Aλ+ R + S, (2.17)

denominated as the ordinary Poisson (OP) model. Thereby, preservation of the

Poisson nature of the emission data during data correction and image reconstruc-

tion is of vital importance. Reconstructing precorrected data, the true coincidences

are corrected for random coincidences, Compton scatter, crystal efficiency varia-

tions, detector deadtime, and photon attenuation before image reconstruction.

This, however, disturbs the Poission characteristics of the emission data [63] and

compromises image quality and noise control.

The solution of this equation is sensitive to noise within the measurement vector

y and thus is performed with iterative methods. Furthermore, a direct inversion
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of this linear matrix equation is computationally demanding or even not existing.

The inversion is solved iteratively, calculating successive approximations of the

tracer distribution, estimating a solution that fits with the acquired data.

A further important component of the iterative approach is the cost function or ob-

jective function. This statistical function defines the criterion to determine which

estimation of the tracer distribution is considered as the best one. The objective

is to maximise the consistency between the observed emission data and the re-

constructed image. Today, the most commonly used function is the Maximum-

Likelihood (ML), beside Least-Squares (LS) or maximum a posteriori (MAP)

methods. The ML estimation assumes that the observed data are acquired ac-

cording to the underlying Poisson distribution. The image that maximises the

likelihood l(y|λ) is assumed to be the best estimate to the measured data. The

maximum-likelihood expectation-maximisation (ML-EM) algorithm and its vari-

ants are the most commonly used iterative reconstruction algorithms in emission

tomography.

The cost function in this algorithm is the Poisson likelihood and the equation for

updating the image estimate is given by

xk+1
i =

xki∑J
j=1 ai,j

·
∑J

j=1 ai,jyj∑I
i=1 ai,jxi

. (2.18)

The first estimate of the image (k=0) for all voxels xi is usually assumed to be a

uniform, non-negative distribution. The ML-EM algorithm is consistent and pre-

dictable in its convergence behaviour even with noisy emission data. One drawback

of ML-EM is the relatively slow convergence. Furthermore, it depends on the ad-

ditive components, namely the scatter and random contribution. In datasets with

higher background activity, the convergence is achieved at later iterations steps.

Consequently, the optimal number of ML-EM iterations is data dependent. The

calculation of a converged solution requires computational effort as orders of mag-

nitude higher compared to FBP. Furthermore, the algorithm yields images that

increase in noise with the number of iterations, mainly due to statistical errors

and remaining inconsistencies in the system model. From Equation 2.13 it fol-

lows that the number of counts in the image represents the number of detected

events, which is a pre-requisite for quantification. Furthermore, the introduction

of the stochastic model of the projection measurement combined with OP-OSEM

accounts for the Poisson nature of the counting experiment and provides a better

noise treatment compared to pre-corrected ML-EM or even the FBP approach. A

model proposed in [46] includes the additive noise, such as randoms r and scatter s,
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as modeled in Equation 2.17

xk+1
i =

xki∑J
j=1 ai,j

·
∑J

j=1 ai,jyj∑I
i=1 ai,jxi + ri + si

. (2.19)

The block iterative reconstruction procedure applying the ordered – subset expec-

tation – maximisation algorithm (OSEM) is derived from the ML-EM. It has been

developed for SPECT and later translated to PET [53]. The data is subdivided

into ordered disjoint subsets and a ML-EM iteration is applied on the data from

only one subset at a time. The subsets are defined to have a maximum angular

separation. At each update a different subset of projection data is used and the

subsets are usually processed in a periodic pattern. The OSEM algorithm accel-

erates convergence by a factor roughly equal to the number of subsets. However,

the organisation into subsets has to be chosen carefully because it is crucial to the

convergence of the algorithm and may also be critical in regards of image arte-

facts [71]. The convergence in presence of noise is not guaranteed. However, high

acceleration and clinically useful image quality have made OP-OSEM to be the

clinical standard today. Very accurate modelling of the imaging process can lead

to a significant improvement of image quality, as shown by the development of

the reconstruction platform PRESTO [86] at the Forschungszentrum Jülich. The

reduction of the long reconstruction times using highly parallel computer architec-

tures is currently an issue of optimisation.

2.5.3. Image Calibration

Once the image is reconstructed with all corrections taken into account, the im-

age intensity values are proportional to the actual concentration of radioactivity.

However, in order to convert the intensity (in pseudo counts/s/ml) into the quan-

titative activity concentration (in Bq/ml), a calibration has to be performed. This

is usually done by the measurement of an object with known activity concentration

and computing the valid calibration factor. The validity of this factor, especially

over time, is an issue of the long term stability and working daily quality control

(dailyQC) of the scanners.
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Imaging

The discovery of nuclear magnetic resonance (NMR) by Felix Bloch and Edward

Purcell in 1946 [14, 78] was the basis for nuclear magnetic spectroscopy (NMS), a

method to analyse molecular structure and diffusion in physics and chemistry. The

application of MR imaging (MRI) was first reported by Peter Lauterbur in 1973

[55]. This initial proof of concept has driven the development of MRI devices that

are capable of imaging the human body, up to the point where MRI has become

one of the most important imaging modalities in medicine. From the beginning

image quality has improved tremendously due to a steady and ongoing development

of MR systems and methods which lasts until today. Modern MRI systems are

capable to deliver images with various contrasts of subjects in vivo. Imaging of

anatomical structures with high spatial resolution and superior soft tissue contrast

together with the delivery of information on perfusion, diffusion and local chemical

composition of tissue and metabolites are clinically established. The discovery

of the change of magnetic properties in oxygenated blood, known as the BOLD

effect, is the fundamental basis of functional MRI (fMRI) applied in neuroscience,

which allows to visualise neuronal activation of the brain. Furthermore, MRI is

not only capable of providing imaging of protons (1H), but also other nuclei less

abundant in living tissue such as sodium (23Na), phosphorous (32P), and oxygen

(17O), denominated as x-nuclei. Compared to CT imaging, MRI provides superior

soft tissue contrast and at the same time avoids potentially harmful radiation

doses.

3.1. Physics of MRI

3.1.1. Nuclear Spins and Magnetic Resonance

An odd number of protons and/or neutrons in the atom’s nucleus gives rise to

the quantum mechanical property of nuclear magnetic resonance. The so called
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spin angular momentum S is related to the magnetic dipole moment µ via the

gyromagnetic ratio γ

µ = γS, (3.1)

where γ depends on the type of nucleus. Then quantum mechanics allows only

two energy states for protons, parallel and anti-parallel to the field

Eup =
1

2
γ~B0 (3.2)

and

Edown = −1

2
γ~B0, (3.3)

known as the Zeeman effect. A transition from one state to the other can only

be achieved by absorption or release of a photon with the energy difference of

γ~B0 = ~ωRF , with a frequency corresponding to the Larmor frequency.

When considering larger samples, the net magnetisation vector, as a superposi-

tion of the single spins, has no longer to be described by quantum mechanics,

but it is sufficient to be treated as a classical magnetic moment. By application

of external magnetic fields, the macroscopic vector M tends to align along that

external field. Powerful magnets generate homogeneous fields up to field strengths

larger than 14 Tesla. Whole-body human imaging systems use magnetic fields of

up to 9.4 T with 1.5 T and 3 T being the clinical standard. The static field is

denominated B0 and is aligned along the patient axis (z-axis). The spin-system

reaches an equilibrium where a net magnetisation M0 exists along the direction of

B0. The phenomenological Bloch equation describes the dynamics of the magnetic

momentum M, subject to a time varying magnetic field B, as given by

dM(t)

dt
= γM(t)×B(t) (3.4)

resulting in a Larmor precession µ × B of the atomic nucleus with an angular

frequency of ω = γB. Manipulation of the magnetisation by a radio frequency

field B1 (magnitude of usually several µT ) oriented perpendicular to B0 and tuned

to the Larmor frequency is usually termed as excitation. The induced torque on

the total magnetization vector M tips the vector away from its initial state. The

flip angle α, by which the net magnetisation vector is rotated away from the z-axis

(assuming perfect on-resonant excitation) is given by

α =

∫ t

0

γB1(τ)dτ. (3.5)
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For example, the time integral of the RF pulse determines the flip angle. Maximum

(pure) transverse magnetisation is consequently achieved by a 90◦ pulse while 180◦

pulses that invert magnetisation from +M0 to −M0 are usually referred to as

inversion pulses [31, 68].

3.1.2. Relaxation

The term relaxation describes the behaviour of M returning to the thermodynamic

equilibrium. The T1 relaxation refers to the spin-lattice or longitudinal relaxation

and denominates the average time constant for the longitudinal magnetisation to

return to its thermal equilibrium state along the main magnetic field. The modified

Bloch-equation for Mz reads

dMz(t)

dt
= γ(M(t)×B(t))z −

Mz(t)−M0

T1

. (3.6)

Neighbouring precessing nuclei can fall out of phase coherence. This results in a re-

duction of the macroscopic transversal component Mxy and thus in signal loss. The

constant for this spin-spin relaxation is referred to as T2 or transverse relaxation,

giving rise to the modified Bloch equations for the transverse magnetisation

dMx(t)

dt
= γ(M(t)×B(t))x −

Mx(t)

T2

, (3.7)

dMy(t)

dt
= γ(M(t)×B(t))y −

My(t)

T2

. (3.8)

Thereby, the time constant for T1 is usually larger than T2. Both T1 and T2 depend

on the rate of molecular motions as well as on the molecular structure. Thus, T1

and T2 depend on the tissue under investigation. In practice, one observes a further

reduced relaxation time constant T ∗2 which is caused by pure T2 decay and static

field inhomogeneities. This is the actually observed decay time of the observed

free induction decay (FID) and may differ significantly from T2 in larger samples

or living subjects (see Figure 3.1).

3.1.3. Linear Gradient Fields and Selective Excitation

Spins of a sample located in the B0 field precess at nearly the same Larmor fre-

quency. The FID signal induced in the RF receiver coil does not contain infor-

mation about the position of individual spins, which, however, is the prerequisite
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for imaging. Therefore, a gradient field G is superimposed on the B0 field. The

gradient field can be switched independently in the physical x-, y- and z-direction

and is consequently denominated as Gx, Gy and Gz. Gradient fields are approx-

imately two to three orders of magnitude lower than the B0 field, but have high

demands on temporal accuracy and geometric linearity within the FOV. The su-

perposition of gradient fields force the spins at different locations to precess at

different frequencies according to

ω(x, t) = γ(B0 +G(x, t)) (3.9)

allowing for a frequency based position encoding of spins. The short term execution

of a gradient field forces the spins to accumulate a position dependent phase.

With phase and frequency encoding, usually performed in perpendicular directions

within one slice 2D imaging sequences can be developed. Not only the reception of

signals can be influenced, but also the excitation. By execution of a gradient during

irradiation of a RF pulse with well defined bandwidth, only those spins which

precess within the irradiated frequency bandwidth are excited. This principle is

applied in order to excite one single slice of desired thickness (often perpendicular

to the patient’s z-axis).

Signal Detection

According to Faraday’s law, the precessing magnetisation induces an electromag-

netic force in the receiver coil located nearby the sample. The basic signal equation

relates the magnetisation M with the expected signal s according to

sr(t) ∼
∫

vol

M(r, t)dr (3.10)

s(t) =

∫
r

Me−ik(t)rdr (3.11)

with k(t) = γ
2π

∫ t
0
G(τ)dτ , which allows for the description of almost every imaging

method [68], neglecting the intermediate step of induction and signal demodula-

tion.

Image Reconstruction

The MR signal is stored in a Fourier plane called k space. Since the spin resonance

data is frequency- and phase-encoded according to the spatial location, it can be
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Figure 3.1.: Free Induction Decay (FID). The measurable signal induced in the RF

coil show an oszillating, exponentially decaying function (blue curve).

The red curves shows the T ∗2 -envelope.

analysed by the Fourier transform. In k-space, fx-coordinates (horizontal spatial

frequencies) and fy-coordinates (vertical spatial frequencies) of the Fourier plane

are replaced by kx and ky-coordinates. A classic spin echo sequence fills the k-space

line by line. For this purpose a single slice is excited which is in the following

readout by several phase-encoding steps followed by a readout gradient. The k-

space location (kx and ky coordinates) of data is governed by the time integral of

the gradient after excitation. Different encoding steps allow for moving along the

k-space in order to acquire the complete data. Image reconstruction in MRI can

be performed by application of an inverse Fourier transform of the k-space data

(see Figure 3.2). Due to the k-theorem, the time signal s(t) can be interpreted as

equivalent to the Fourier Transform F of the weighted proton density f(x, y, z) as

s(t) = F{f(x, y, z)}(kx, ky, kz) =

∞∫∫∫
−∞

f(x, y, z)e−i2π(kxx+kyy+kzy)dxdydz. (3.12)
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Figure 3.2.: The reconstructed MR image (left) as the inverse Fourier transform of

the acquired k-space data (right).

3.2. Methods and Contrasts in MRI

3.2.1. Spin Echo

The concept of echoes in MR was first applied in NMR and fully explained by

Erwin Hahn in 1950 [12]. It was further developed by Carr, pointing out more

aspects of a train of 180◦ refocusing pulses. After spin excitation, the spins precess

at slightly different frequencies, followed by defocusing after a short time. In

nuclear magnetic resonance, spin echo refers to the refocusing of precessing spin

magnetisation by a 180◦ pulse at Larmor frequency. The MR signal observed

after the initial excitation pulse decays with time due to spin-spin relaxation and

magnetic field inhomogenietis (T ∗2 ). This loss of transverse magnetisation is partly

reversible and can be recovered by a 180◦ refocussing pulse. A refocussing pulse

is applied after the time period T of dephasing and the inhomogeneous evolution

will rephase to form a so called spin echo at time 2T . The intensity of the echo

relative to the initial signal is given by e−2T/T2 .
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3.2.2. Gradient Echo

The major difference between gradient and spin echo sequences is the application

of flip angles that are usually smaller than 90◦ and the absence of the 180◦ rephas-

ing pulse. The reduced flip angle leads to a smaller amount of magnetization that

is tipped into the transverse plane. Consequently, recovery of longitudinal magne-

tization is faster. This allows a shorter repetition time (TR) and echo time (TE)

and hence potentially reduces the measurement time. The decay of the transverse

magnetization is due to T ∗2 relaxation and to B0 field inhomogeneity and to static

magnetic susceptibility effects. The relaxation is not reversed and the loss of signal

results from T ∗2 effects. The signal obtained is thus T ∗2 -weighted rather than T2-

weighted. These sequences are more sensitive to magnetic susceptibility artefacts

than spin echo sequences.

3.2.3. Applications

A major perturbation of the resonance frequency of atomic nuclei is due to the

shielding effect of surrounding electrons. This electronic shielding reduces the

effective magnetic field at the atomic nucleus. Consequently, the Larmor frequency

is reduced. This shift in the resonance frequency due to the electrons’ molecular

orbital coupling to the external magnetic field is referred to as chemical shift.

This effect allows to probe the chemical structure of tissue which depends on

the electron density distribution in the corresponding molecular orbitals. This

is a source for image deformation, but also the basis of a powerful tool referred

to as NMR spectroscopy. Beside the T1, T2 and T ∗2 weighted images, the fMRI

methods have been established in MRI. With fMRI it is possible to detect changes

in the cerebral blood flow, mainly by the blood-oxygen-level-dependend contrast

(BOLD) [70]. With this technique, the neural activity in the brain which is related

to the energy consumption, can be imaged. Since the data suffer from noise, a

preprocessing together with statistical analysis is crucial to obtain reliable results.

With a temporal resolution of 4 s down to 1 s, and a spatial resolution down to

1 – 2 mm, fMRI is a powerful modality in neuroscience and provides valuable

information in hybrid MR-PET studies. Further contrasts, such as the MR based

angiography (MRA) and ultra short echo time (UTE) sequences for bone detection

can provide hybrid MR-PET imaging with additional information (see Figure 3.3).

As described in Section 5.2 the segmentation of bone, tissue and air from MR

images is a major concern for attenuation and scatter correction for PET in hybrid

MR-PET and thus for the quantification of PET images [12].
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Figure 3.3.: Versatile MR contrasts acquired with the 3T MR-BrainPET. Figure

(a) shows an MR Angiography acquired with a time-of-flight (TOF)

sequence. Figure (b) shows a T2-weighted image, (c) an anatomical T1-

weighted image (MP-RAGE) and Figure (d) the first echo of the UTE

sequence used for PET attenuation correction with bone detection. In

the UTE sequence, even structures of the MR coil become visible.
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3.2.4. MR Hardware Architecture

The previously described magnetic fields are generated by different electromagnetic

coils. Since the field strength and temporal behaviour differ by several orders of

magnitude, shape and material of these coils are also very different. The main

magnetic B0 field is constant over time and requested to be homogeneous over

the entire FOV. Modern magnets apply helium cooled superconducting materials

wired in a cylindrical shape in order to provide a clinically relevant magnetic field

in the range of 1 to 11 Tesla. For lower field strengths, permanent or resistive

magnets can be applied, but these are limited to specialised applications. For

spatial encoding, gradient coils with a maximum field strength in the order of

80 mT/m are integrated in the MR bore. Different coils are applied for the different

physical gradient directions Gx, Gy and Gz. These gradient fields are switched

fast, with rise times up to 5 µs/mT/m, and also require a very linear field in

order to minimise spatial distortions. The fast changing gradient fields may also

induce eddy currents in conductive material within the MR scanner, reducing

the effective gradient fields. The B0 field is known to suffer from imperfections,

especially susceptibility effects when positioning a subject in the field.

A shift in the overall field strength may be corrected by changing the RF frequency

for transmit and receive, which corresponds to a constant field correction. Linear

corrections are accounted for by an offset current to the gradient coils. Higher

order corrections may be done applying metal shim plates to modify the existing

magnetic field or electromagnetic shim coils to generate additional magnetic fields.

These corrections are performed in the range of parts per million (ppm) of the B0

field strength. RF coils with single channel or arrays with multiple channels are

applied, transmitting and receiving RF fields in the range of the Larmor frequency

of the nucleus. Since the received energy is orders of magnitude lower than the

excitation energy, different channels for reception and transmission are applied.

For acceleration of the imaging process, parallel reception hardware is available

and applied together with the respective MR sequences and image reconstruction

procedures. Shorter wavelengths, especially for proton imaging with ultra high

field (UHF) MRI, make parallel excitation (pTX) concepts necessary, which may

improve image homogeneity, but on the other hand are more demanding in regards

of safety control of the SAR (specific absorption rate).
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4. Simultaneous MR-PET Imaging

Parts of this chapter have been published in [104].

4.1. Challenges and Advantages

The novel hybrid imaging technology of MR-PET offers versatile advantages com-

pared to other established technologies. A reduced radiation dose compared to

PET/CT is not only important for pediatric applications, but also for therapy

control with several subsequent scans. Besides, the measurement time can be

reduced due to the simultaneous acquisition of both modalities, since often MRI

scans are required additionally to PET/CT scans. This increases the patient conve-

nience especially scanning infants and critically ill patients and holds the potential

for a higher patient throughput, compared to sequential MR/PET. With the fast

acquisition of MR images with EPI readout in the range of seconds, the motion

information of the patient may be derived from the MR images. Thus, not only

PET data but also MR data may be motion corrected without applying external

motion tracking [87]. Alternatively, the information from MR navigator sequences

can be used to correct MR and PET data for motion. A physical effect that may

contribute to a better PET image resolution in the image planes perpendicular

to the magnetic field is the effectively reduced positron range. At high magnetic

fields, the image quality of positron emitters with a high positron energy, such as
68Ga (Emax = 1.89 MeV) or 15O (Emax = 1.7 MeV) can be improved [36]. With

the truly hybrid technology, the spatial and temporal co-registration of the two

modalities can be guaranteed which is important for example in neuroscience, com-

bining neuroreceptor PET with fMRI. However, clinically relevant protocols have

to be implemented and optimised to exploit the high potential of hybrid MR-PET

imaging with the variety of anatomical contrasts and functional parameters [66].

To realise simultaneous PET and MRI the technological challenge of possible mu-

tual interferences had to be overcome. The interference of the PET device with

the strong static magnetic field B0 and the fast switching gradient fields G as well
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as the irradiated RF power had to be excluded. Therefore, the conventional PMTs

are replaced by the non-magneto sensitive APDs [30] or SiPMs [85]. Furthermore,

the PET electronics is shielded against the RF field B1. In turn, the presence of

the PET insert within the MR scanner may result in degradation of the MR image

homogeneity and SNR. The homogeneity of B0 may be compromised, which has

to be compensated by appropriate passive and active shimming. Besides, the RF

receiver coil is influenced and detuned by the RF shielding of the PET compo-

nent and has to be adapted to the new settings. Additionally, noise pickup by the

receiver coil from the PET electronics has to be excluded [112, 104].

An additional challenge and presently active field of research is the determination

of accurate attenuation properties of the scanned subject. Since no device for the

acquisition of transmission data is available within the MR bore, the attenuation

data have to be derived from MR images [39]. Also the scatter simulation relies

on an accurate estimation of scattering medium, defined by the attenuation map.

So not only the quantitative tansmission properties, but also the exact alignment

is of vital importance [15]. For the determination of the image derived input

function (IDIF), high resolution of the PET image is a prerequisite in order to avoid

uncertainties related to the partial volume effect [65]. The IDIF is often needed in

tracer kinetic modelling [19]. Besides using the high resolution of the BrainPET,

the IDIF can be further improved taking into account additional morphological

information from MR angiography or other structural MR image contrasts [23].

Section 4.2 gives a description and characterisation of the utilised MR-PET hybrid

scanners and Section 4.4 gives a detailed investigation of influences of MRI on PET

measurements.

4.2. MR-BrainPET Scanners

The experimental results presented in this work are mainly acquired with the

Siemens 3T and 9.4T MR-BrainPET scanners. These hybrid MR-PET scanners

consist of a BrainPET insert and an MR scanner. The MR component of the

3T MR-BrainPET (see Figure 4.1(a)) is essentially the commercially available

Siemens 3T TIM Trio with minor modifications, such as a vertically fixed patient

bed and an adapted head coil with low attenuation for 511 keV photons. For

the 9.4T MR-BrainPET (see Figure 4.1(b)) the MR scanner is developed by the

Forschungszentrum Jülich in collaboration with Siemens Healthcare. It contains

the same BrainPET scanner model but with longer cables for signal transmission.
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(a) 3T MR-BrainPET. (b) 9.4T MR-BrainPET.

Figure 4.1.: 3T (a) and 9.4 T (b) hybrid MR-BrainPET scanners installed in Jülich.

4.2.1. MR Component

As described above, the characteristic instrumental features of the MR scanner are

the static magnetic field (B0), the temporal and spatially varying gradient fields

in x- y- and z-directions, denoted by Gx, Gy and Gz, and the RF field, denoted

by B1. In both scanners, the B0 field of 3T and 9.4T, respectively, is directed

along the scanner’s z-axis. The static field determines the necessary RF carrier

frequency of approximately 126 MHz, which corresponds to the Larmor frequency

of protons at 3T. The Larmor frequency for protons at 9.4 T corresponds to 400

MHz. This results in higher demands on RF technology and homogeneity of the

applied magnetic fields and spin excitation. During execution of an MR sequence,

RF pulses of typical durations ranging from less than 1 ms up to a few ms and

a magnitude in the range of 10 to 20 µT are applied. The RF pulses may be

modulated in amplitude and phase. The reference setting for both scanners is a

transmitter voltage of 215 V for a rectangular pulse duration of 1 ms to generate

a 180◦ flip angle in vivo. The total power deposited by the application of RF

pulses is subject to hardware supervision, which ensures that the induced specific

absorption rate (SAR) remains below the safety limit. This effectively regulates

the amplitude, spacing and duration of the RF pulses. The gradient fields, i.e.

additional spatially-varying magnetic fields, define the spatial encoding of MR

imaging and are generated by gradient coils mounted within the MR scanner. The
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gradient coils are identical for both scanners and applied in a pulsed manner with

durations of a few milliseconds and amplitudes up to 40 mT/m in each physical

direction. The time to reach a given amplitude is determined by the unit rise time

which can be on the order of 10 µs/mT/m.

An MR sequence consists of well-defined gradient and RF pulses. These pulses

usually constitute a common block, which is repeated with a predefined spacing

(repetition time, TR) as depicted in Figure 4.5.

4.2.2. BrainPET Component

The BrainPET component is designed as an insert to be placed in the bore of

the MR scanner. It consists of 32 copper-shielded detector cassettes. Copper has

good shielding properties regarding RF radiation of the applied wavelength. Each

detector cassette contains 6 detector blocks each with a 12×12 LSO crystal matrix,

consisting of crystals of 2.5× 2.5× 20 mm3 size. The crystal matrix is read out

by a 3 × 3 array of magnetic field-insensitive APDs. The pre-amplified analogue

signals of each detector cassette are transmitted via shielded cables of 10 m length

at the 3T MR-BrainPET and 12 m length at the 9.4T MR-BrainPET scanner to

the filter plate. The main PET electronics is decoupled from the MR cabin by the

filter plate, the shielding of cables and the detector cassettes. Digitisation of the

PET signals, energy and position determination of single events and coincidence

search is performed on dedicated hardware mounted outside the MR cabin [67, 6].

A CFD single event is checked regarding its energy (here 420 keV to 580 keV) and

its position (within a certain area of the detector block), resulting in an XYE1-

qualified account for coincidence lookup.

4.2.3. PET Detector Setup

In order to bring the PET scanner in an optimal status in terms of homogeneity

of detection efficienccy, the detector setup has to be adapted and verified. This

involves

• Crystal Lookup Table (CLU),

• Energy Lookup Table (ELU) and

1XYE-single event: X denominates the x-position on block, Y the y-position on block and E

the photon energy
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• Timing Lookup Table (TLU).

The block-individual CLU denotes the assignment matrix of a nearly continous

position among the detector (512 × 512) to discrete crystal number (12 × 12)

(see Section 2.4.4). Misalignments influence the positioning of events and lead

to inhomogeneities in the crystal sensitivity. Due to shifts in the APD gains, a

regular check of the validity of the CLUs have to be performed, in order to have the

system in a propper status. The correct values in the ELU assure that the energies

of accepted events are in the desired range and only measured energies within the

thresholds defined by LLD and ULD are accepted. The TLU corrects for timing

differences between the blocks in order to find coincidences within the definded

coincidence timing window. All these setup parameters have to be checked and

updated in order to allow for optimal PET data acquisition.

(a) Detector Setup before tuning.

(b) Detector Setup after tuning.

Figure 4.2.: Cystal efficiencies ε (without geometric component g) before (a) and

after (b) tuning of the setup. The improvement of homogeneity, espe-

cially for corner and edge crystals, is clearly visible.
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The result of setup optimisation should be a more homogeneous crystal efficiency

distribution among the detector (see Figure 4.2.3). The verification of the setup

is an issue of long term stability which is assessed by the DailyQC measurements

(see Section 5.9).

4.3. Characterisation

The characterisation of PET scanners is proposed by the NEMA standards [1, 2, 4]

in order to assure comparability of the characterised scanners. Two standards

exist, one for whole body scanners with an inner diameter of 70 – 80 cm and one

for small animal scanners with an inner diameter of 10 – 20 cm. The BrainPET

scanner with its inner diameter of 36 cm is a special case regarding the size of the

FOV. Thus, some of the standards had to be adapted to make this study feasible.

4.3.1. Countrate Performance

The LSO crystals contain the radioactive isotope 176Lu with an activity of about

100 Bq/cm3 emitting photons with energies above 350 keV [60]. This background

activity becomes dominant at very low activity concentrations within the FOV

and leads to a more significant amount of random coincidences. Besides, the photo

peak detection of the detector shifts from the 511 keV peak and responds to the

350 keV peak of 176Lu, assuming the dominant peak always at 511 keV. This affects

the energy determination and finally results in a rejection of 511 keV photons.

Measurements were performed to find the limit of countrate above where this prob-

lem is not observed. A lowest countrate of approximately 11 true kcps has been

defined (as depicted in Figure 4.3). When activity is brought into the scanner,

the system needs some time to detect the 511 keV peak and to detect true co-

incidences which related to the automatic peakfinding. This becomes important,

when patients are injected within the scanner and data are acquired starting from

the time of injection.

To assess the noise equivalent countrate (NEC), a cylinder phantom of 20 cm length

and 14 cm diameter was filled with 11C and placed transaxially and axially centered

into the PET scanner. The decay process was measured until the remanent activity

fell below a measurable threshold.

The maximum NEC countrate of 164 kcps was found for an activity concentration

of 26 kBq/ml, using the cylinder phantom with 14 cm diameter (see Figure 4.4)

which is in good agreement with [57] and [51].
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Figure 4.3.: Plot of the headcurve illustrates the problem of finding the photo-

peak at true countrates lower than 11 kcps due to the 176Lu photon

background.

4.3.2. Sensitivity

The sensitivity of the BrainPET was measured according to the NEMA standard

with a point source and with a line source. For the line source positioned along

the axial direction and transaxially centered, the sensitivity was found to be 0.6 %

and for a transaxial offset of 10 mm the sensitivity was 0.9 % [57, 51]. For point

sources, the peak sensitivity is detected at the centre of the FOV with 6.7 % (5.3 %

at 10 cm radial offset).

4.3.3. Spatial Resolution

The spatial resolution of the scanner is limited by physical effects and the instru-

mentation. Physical effects are mainly the positron range, the acollinearity of the

two annihilation photons and the penetration depth of the annihilation photons in

the scintillation crystals, referred to as depth of interaction (DOI). According to

the NEMA standard, the point sources were reconstructed with a FBP algorithm

[1]. The measured image resolution in radial direction was found to be 2.8 mm

(2.7 mm tangential, 3.4 mm axial) at the centre of the FOV and 3.3 mm (3.0 mm

tangential, 4.1 mm axial) at 50 mm radial offset [57]. The approximation of image

resolution r in the centre of the FOV for the BrainPET applying the empirical
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(a) Coincidence countrates of prompts and randoms for a high range of countrates.

(b) NEC peak countrate and Trues+Scatter peak countrate.

Figure 4.4.: Noise equivalent countrate (NEC) showing the full dynamic range of

the decay experiment in (a) and the relevant range for human studies

in (b).
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equation publised by Moses et al. [64]

r = 1.25

√
d2

4
+ (0.0022 D)2 +R2 + b2 (4.1)

with detector size of d = 2.5 mm, the system diameter of D = 360 mm, the positron

range of R = 0.46 mm for 18F and the coefficient for the block design b= 2 results

in a resolution of 3.1 mm. This estimation is in good agreement with the resolution

measurements.

The scatter fraction measured according to the NEMA standard was determined

to be 38 % - 42 % [51].

4.4. Influences of MRI on PET

During simultaneous MR-PET studies, a minor but reproducible and MR sequence-

dependent countrate reduction has been observed. A more detailed analysis of this

effect is presented in the following. A correction procedure is derived and evalu-

ated in Chapter 5.6. As the combination of gradient and RF modulation in an

MR sequence may be almost arbitrarily complex, a systematic investigation of the

influence of each component is necessary and was performed in the present study.

Nonetheless, the examined gradient and RF waveforms were similar to those ap-

plied in clinical MR sequences [104].

4.4.1. Influence of MR-Gradients

In order to test the influences of the gradient field a 68Ge-cylinder phantom was

positioned inside the BrainPET. In this test the RF head coil was removed to

avoid any further interference. The gradient system offers different parameters:

the amplitude (Gmax), the repetition time (TR), and the rise time (trise). The MR

gradients Gx, Gy and Gz were switched separately with different parameters (see

Figure 4.5). RF transmission was disabled during this test.

Influence of Gradient Amplitude First, the gradient amplitude was varied. The

pulse duration was 1 ms, TR was fixed to 2.5 ms and the rise time was 6.5 µs/mT/m.

The amplitude was subsequently set from 5, 10, 15 to 20 mT/m. The duration of

each sequence was 52 s with a pause of 60 s. The decrease in the prompt coincidence

countrate was found to increase nearly linearly with the amplitude of the gradient

pulses (Figure 4.6 and Table 4.1). The number of CFD singles, which denominate
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Figure 4.5.: Relevant MR sequence parameters, as separated and applied in dedi-

cated test sequences.

the first qualification level for single events was not affected (Figure 4.6, red curve).

As shown in Figure 4.6 (blue curve), the energy and position determination was,

however, disturbed so that the XYE qualified singles were found to be reduced

up to 0.47 %. This results in the observed instantaneous countrate drops of the

prompt coincidences as well as delayed coincidences which are not shown here.

Gradient Gx(%) Gy(%) Gz(%)

5 mT/m -0.12 ± 0.009 -0.11 ± 0.002 -0.55 ± 0.02

10 mT/m -0.23 ± 0.013 -0.22 ± 0.0018 -0.76 ± 0.16

15 mT/m -0.36 ± 0.014 -0.29 ± 0.015 -1.0 ± 0.063

20 mT/m -0.47 ± 0.028 -0.41 ± 0.012 -1.1 ± 0.11

Table 4.1.: Influences of MR gradient amplitude. Measured prompt coincidence

countrate change in percent (mean ± standard deviation (SD), n=3).

The repetition time was 2.5 ms and the gradient duration was 1 ms.

Influence of Gradient Repetition Time The TR, i.e. the number of gradient

switching operations within a fixed time period, was studied by shortening it from

20 to 10, 5, 2.5 and finally to 1.2 ms. The pulse duration was 1 ms, the amplitude
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Figure 4.6.: Countrate of over time showing influences of MR gradient ampli-

tude. Rates of CFD single events (red curve), XYE single events

(blue curve), prompt coincidences (black curve) are depicted. The

parameters were applied according to Table 4.1.
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was 20 mT/m and the rise time was 6.5 µs/mT/m. The duration of each MR

sequence was 52 s with a pause of 60 s. When varying the gradient repetition

time, again a nearly linear influence on the prompt coincidence countrate was

observed (Table 4.2 and Figure 4.7). The prompt coincidence rate was reduced with

decreasing repetition time and depended additionally on the gradient direction.

The most severe drop of 2.15 % was found for the shortest repetition time of 1.2

ms with the gradient in z-direction.

Gradient Gx(%) Gy(%) Gz(%)

20 ms -0.10 ± 0.0061 -0.09 ± 0.0016 -0.17 ± 0.018

10 ms -0.16 ± 0.0021 -0.09 ± 0.009 -0.31 ± 0.007

5 ms -0.19 ± 0.09 -0.19 ± 0.0078 -0.53 ± 0.0041

2.5 ms -0.48 ± 0.13 -0.42 ± 0.0038 -1.08 ± 0.14

1.2 ms -1.04 ± 0.17 -0.84 ± 0.121 -2.15 ± 0.41

Table 4.2.: Influences of gradient repetition time (TR). Measured prompt coinci-

dence countrate change in percent (mean ± SD, n=3) The amplitude

was 20 mT/m and the gradient duration was 1 ms.

Figure 4.7.: Measured prompts coincidence countrate at varying TR according to

Table 4.2.
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Influence of Gradient Rise Time The influence of the gradient rise time was

studied with unit rise time values of 6.5, 15, and 30 µs/mT/m. In order to reach

the top of the gradient even at longer rise time, the pulse duration of 2 ms was

used, the TR of 2.5 ms and the amplitude of 20 mT/m. Increasing the rise time

to 50, 75 and 100 µs/mT/m, the trapezoid gradient degenerates to a triangular

shape (tflattop = 0 s). In the last two settings, the maximum amplitude is limited

to 10 and 5 mT/m, respectively. The duration of each sequence was 57 s, with

a pause of 60 s. In contrast to the amplitude and repetition time, variations in

unit rise time did not cause a linear dependency of the rise time over the tested

range (Table 4.3). The PET count rate showed an expected characteristic for

variations of unit rise time in Gz. The most severe drop of 1.2 % was found for

the fastest unit rise time of 6.5 µs/mT/m with the gradient in z-direction. For Gx

and Gy the countrate reduction was also reproducible for all parameters, and the

characteristics for Gx and Gy were similar. However, a linear dependency between

the countrate reduction of the PET data and the increasing slope was only found

as long as the gradients had a trapezoid shape and the rising and falling edges were

well separated by the flattop. For a unit rise time of 50, 75 and 100 µs/mT/m and

a triangular gradient shape, the countrate reduction was found to be more severe

than for trapezoid gradient shapes.

Gradient Gx(%) Gy(%) Gz(%)

6.5 µs/mT/m -0.51 ± 0.011 -0.46 ± 0.018 -1.2 ± 0.078

15 µs/mT/m -0.22 ± 0.022 -0.23 ± 0.032 -0.31 ± 0.041

30 µs/mT/m -0.15 ± 0.041 -0.14 ± 0.041 -0.19 ± 0.043

50 µs/mT/m -0.36 ± 0.038 -0.38 ± 0.021 -0.09 ± 0.007

75 µs/mT/m -0.26 ± 0.029 -0.26 ± 0.031 -0.07 ± 0.0039

100 µs/mT/m -0.21 ± 0.031 -0.17 ± 0.033 -0.06 ± 0.0079

Table 4.3.: Influences of gradient rise time (trise) on PET countrate. With rise times

≤ 50 µs/mT/m, the trapezoidal pulse degenerates to a triangular pulse.

4.4.2. Gradient Superposition

Investigating the linear superposition of the gradient directions it was shown that

the countrate drop increases when gradient fields originating from different gradient

coils are switched simultaneously (see Table 4.4 and Figure 4.9).
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Figure 4.8.: Analog PET detector signal during execution of gradients with short

rise time (6.5µs/mT/m), Figure (a) and long rise time (30µs/mT/m),

Figure (b). The transmission of RF pulses showed no influence on the

PET detector signal (c) [104].
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Figure 4.9.: PET headcurve during switching of MR gradients in different combi-

nations of Gx, Gy, and/or Gz as described in Table 4.4.

Thus, the total prompts countrate reduction (∆P ) caused by simultaneously switched

Gx, Gy, and/or Gz corresponds to the sum of countrate reductions caused by the

single gradients switched separately according to

∆P (Gx+Gy +Gz) = ∆P (Gx) + ∆P (Gy) + ∆P (Gz). (4.2)

Gradient Measured Value Calculated Value

Gx 0.41% –

Gy 0.33% –

Gz 0.99% –

Gx +Gy 0.81% 0.74%

Gx +Gz 1.38% 1.40%

Gy +Gz 1.35% 1.32%

Gx +Gy +Gz 1.79% 1.73%

Table 4.4.: Prompt coincidence countrate reduction for superposition of gradients

fields in all combinations.

As a source for the countrate reduction, the switching gradients were found to

induce an additional signal to the baseline of the PET detector signal during ramp

up and ramp down (Figure 4.8 (a) and (b)). The signal is proportional to dB/dt,
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i.e. the first derivative of the gradient, and provides a basic explanation of the

findings of the previous experiments, varying gradient amplitude, repetition time

and rise time. Consequently, rising and falling gradient ramps give rise to mirrored

PET signals, as evident in Figure 4.8 (a). The oscillations seen by the analog

PET detector signal explain the finding that triangular gradient pulses may have

stronger effects on the PET countrate. With a flat top time of the gradient close

to zero, induced signals of the increasing and decreasing gradient superimpose.

This results in analogy to wave theory in constructive or destructive interferences

affecting the PET countrate to a higher or lower extent. It depends on the gradient

rise time as a global parameter as well as on the frequencies and phase difference

of the induced analog PET signals.

4.4.3. Influence of RF Pulses

The impact of RF pulses was studied with the 68Ge-cylinder phantom located

inside the two RF head coils. In this test, sequences consisting of RF pulses only

(no MR gradients) were performed. The flip angle and thus the amplitude of

the transmitter voltage was tested for 100 V, 200 V, 300 V, 400 V and 500 V with

durations of the RF pulses varying from 0.5 ms up to 1.5 ms, which is equivalent

to flip angles of up to 625◦ in vivo. With this setup the MR scanner was operated

at the maximum allowed SAR level. Each specific parameter set was tested for

one minute of repeated RF pulsed with minimal possible spacing (dictated by the

SAR limits). The RF pulses showed no measurable effect on the countrate, neither

on the single block counter nor on the prompt or delayed coincidences, even when

reaching the maximum SAR allowed by the MR scanner hardware (see Figure 4.8

(c)). Furthermore, no effect of the RF transmission on the PET temperature was

observed.

4.4.4. Influence of Temperature

APDs are known to be sensitive to variations of temperature [30]. The increase

of temperature in the detector cassettes is a secondary effect, caused by eddy cur-

rents induced by the temporally changing magnetic field gradients. The observed

increase of temperature during standard measurements is simulated by a controlled

variation of the temperature of the air flow by changing the cooler temperature.

In order to measure under steady state conditions, the time between tempera-

ture adjustments and measurements was 1 hour. The effect on the PET data
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was analysed. One temperature sensor is located within each detector cassette

near the detector electronics and can be read out from the PET console. The air

temperature within the detector cassettes is usually kept at the nominal value of

306 K (33◦C), employing temperature-controlled airflow. Experiments, in which

the cooler temperature was adjusted manually, revealed a small dependency of

the countrate on the temperature with variations from -0.5 %/K to -1%/K. Run-

ning clinical MR sequences with standard parameters, the temperature control

restricts temperature fluctuations within a range of ∆T = ±0.6 K about the nom-

inal temperature. The steepest temperature slope of still less than 0.1 K/s was

observed during DTI sequences with an EPI readout. The temperature dependent

countrate variations show a delayed and retarded decrease compared to the instan-

taneous countrate drops induced by the gradients with values up to 4 %/s. Thus,

the sequence related temperature variations in the cassettes can be minimised or

excluded as a cause of the immediate countrate reduction.

4.4.5. Conclusions

The influence of MRI on PET during simultaneous measurements with the Siemens

3T MR-BrainPET has been investigated and described as function of relevant MR

parameters. The parameters include the influence of the static B0 field, the RF

field as well as the direction, amplitude, rise time and repetition time of the gra-

dient fields. The gradient fields were identified as the primary source of countrate

reduction of a few percent during simultaneous MR-BrainPET measurements. The

main reason is the distortion of the analog signals on the PET hardware. This

affects the baseline signal during the ramping of the MR gradients. RF pulses

were found to have no measurable influence. However, future designs of hybrid

MR-PET scanner may further reduce the reported decreases of countrate by ap-

propriate changes in detector hardware, such as optimisation of the analog boads

for filtering the PET detector signal.
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5. Procedures for Quantification of

PET Images

Parts of this chapter have been published in [104, 107, 105].

The coincidence data acquired with a PET scanner contain information about

projections of the tracer distribution and can be used to reconstruct 3D images.

However, the measured and uncorrected prompt data Pij are affected by different

sources of errors compromising the image quality and quantification. Corrections

essential for PET are:

• Normalisation (Ni,j)

• Random Correction (Ri,j)

• Attenuation Correction (Ai,j)

• Scatter Correction (Si,j)

• Normalisation for Scattered Events (N scat
i,j )

• Deadtime Correction (Dk,l)

• Pileup Correction (Ui,j)

The development and optimisation of methods for quantitative PET imaging to-

gether with evaluation and implementation in a reconstruction framework are de-

scribed in the following. The different corrections contribute to the estimated true

number of coincidences Ti,j in a specific LOR connecting the crystals i and j, which

are mounted on the blocks k and l, respectively, according to

Ti,j = (Pi,j − Ri,j) · Ni,j · Ai,j ·Dk,l · Ui,j − Si,j · Nscat
i,j . (5.1)

This formula is used when pre-correcting the data prior to reconstruction. How-

ever, in order to avoid a bias in low statistics frames and the reduction of noise
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in the reconstructed images the correction parameters have to be included in a

reconstruction model, rather than pre-correcting the data (see [63, 62] and Sec-

tion 2.5.2). The central limit theorem states that a sufficiently large number of

independent random variables with a finite mean µ and variation σ can be approx-

imated by a Gaussian distribution. For additive contributions such as random and

scattered coincidences, the propagation error for the variance is given by

σA+B =
√
σ2
A + σ2

B. (5.2)

It is crucial to determine the corrections as accurately as possible, not only to

improve the quantitative accuracy and to eliminate systematic artefacts, but also

to reduce the noise within the image. With long acquisition times it is possible

to obtain data with low statistical variance. Methods wich are applicable to mea-

sured corrections, such as the normalisation or the random correction, are variance

reduction (VR) algorithms.

5.1. Random Correction

The rate of detected random coincidences (Section 2.4.7) is a function of the sin-

gles countrate. The described background becomes more prominent with increas-

ing countrates (see Figure 5.1) and leads to a reduced contrast. Since the rate

of random coincidences is proportional to the length of the timing window and

proportional to the activity within the FOV, a good temporal resolution is crucial

in order to keep the random coincidence rates low.

Random correction is a major correction in PET and several methods are avail-

able. A first method proposed for random correction was the constant background

subtraction [94]. This method can be used to verify the remaining background in

the data, when estimated randoms are compared to the randoms in the prompts

outside the object. Furthermore, it can be applied as a second order random cor-

rection to provide a better data basis for the scaling of the scatter sinogram. The

classical approach determines the random coincidences from measured single event

rates of each crystal, which also reduces the noise in the data [8]. Here, a channel

connecting the crystals i and j with the single rates Si and Sj, respectively. With

a coincidence time window of 2τ the random rate can be estimated by

Ri,j = 2τSiSj, (5.3)
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(a) Profile of sinograms at low countrate

(b) Profile of sinograms at high countrate

Figure 5.1.: Radial profile of sinograms with high (b) and low (a) total countrate.

The constant background caused by the random coincidences (black

curve) has a vital contribution at high countrate.
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where τ is set according to the range of the timing resolution of a detector block.

The advantage of this approach is that the singles rates possess much lower statis-

tical uncertainties compared to the measured delayed coincidence rates when using

the delayed window approach (DW). This reduces the variance in the estimated

randoms. Today’s PET scanners implement a delayed window. To estimate the

constribution of the random events contained in the prompt coincidences, usu-

ally an additional but delayed timing window detects random coincidences in each

channel. These measured coincidences comprise two singles events with a time

difference significantly beyond the coincidence timing resolution of the scanner.

Thus, the delayed window technique only samples random events and provides an

estimate of the amount of random coincidences contributing to the prompt coinci-

dences for each LOR. The decomposition of single events from measured delayed

coincidences holds the advantage that prompts and delayeds experience the same

deadtime effect.

However, the direct subtraction of randoms measured in the DW results in a

bias especially for short measurements [101]. Consequently, the measured delayed

coincidences are further processed using variance reduction techniques. This is

important for quantification in short dynamic frames with low overall count sum.

Applying the ordinary Poisson model for iterative reconstruction together with the

VR randoms this bias can be significantly reduced. One approach which has been

implemented for the BrainPET is the variance reduction on random coincidences

(VRR) from delayed coincidence histograms firstly applied for the Siemens HRRT

(High Resolution Research Tomograph) [17]. In order to preserve the crystal effi-

ciencies and the deadtime properties of the DW coincidence data, some adaptions

of Equation 5.3 have to be made.

Firstly, the expected single rates have to be found. Starting from uncorrelated

singles acquired with the DW method this algorithm finds iteratively the crys-

tal single rates compatible with the delayed coincidence events Sj. Finally, the

classical Equation 5.3 is applied [17].

The method has been validated with a 68Ge-cylinder measurement with an activity

of approximately 50 MBq. Data have been acquired in LOR-histogram mode for

10 min and 8 h. Figure 5.2 indicates the performance of the algorithm, comparing

the VRR processed data from the 10 min scan with the acquisition of a 8 h scan.

It can be clearly seen that the crystal efficiencies are maintained (Figure 5.2(b)).

Furthermore, the 10 min VRR data have an even reduced noise level compared

to the 8 h acquisition (Figure 5.2(c)). Since the VR algorithm is not expected to

induce systematic structures in the sinogram data, the difference image is expected
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to exhibit noise with the mean value of zero (Figure 5.3).

Besides the sensitivity pattern of the VRR and the conservation of counts it is

important to verify the influence of randoms on the reconstructed images with a

quantitative analysis. Data of the described 68Ge-cylinder phantom were acquired

with different acquisition times and were reconstructed applying only normalisation

(CBN) and attenuation correction. Scatter is not corrected, since it may further

bias the evaluation due to a more problematic tail fit on low count frames. However,

scatter fraction is assumed to be constant for a fixed geometry, thus not affecting

the evaluation. From the diagram in Figure 5.4 it can be seen that the VRR

algorithm performs much better than the delayed window approach, especially for

low statistics frames.

Due to implementation issues, the prompts and delayeds window may have differ-

ent sensitivity which also has to be taken into account by a global scaling factor.

Performing digital coincidence processing, the time stamp has a limited precision,

leading to a temporal quantisation. The precision is defined by the least significant

bit (LSB) of the time stamp and a maximal resolution of τLSB. Singles from two

blocks are defined to be in coincidence if their timestamps do not differ more than

W , with W ·τLSB usually in the range of the temporal resolution of the block. The

effective coincidence window size for accepting the two singles as a coincident event

is thus (2W +1) ·τLSB. Here, the clock cycles have a defined length of M ·τLSB and

the implementation of the DW is realised that events from different clock cycles

are not detected as coincidence. Therefore, random coincidences contained in the

prompts window is slightly reduced to the ones in the delayed window [96]. For the

APD based BrainPET the measured timing resolution of one detector was found

to be below 5.9 ns FWHM. Therefore, the coincidence window for the BrainPET

was set to 2τ = 12 ns. Due to this relatively large coincidence window, a high rate

of random coincidences is accepted and has to be corrected (see Figure 5.1). Fig-

ure 5.5 shows the measured sensitivity of randoms in the prompt window and the

delayed window, compared to the theoretically computed value. The fitted value

of 0.96298± 2.26 · 10−5 is in good agreement with the computed value of 0.96194.

At very low countrates, the peak tracking algorithm fails and the sensitivity of the

two windows starts to diverge. However, this range of countrates is not relevant

for human studies.
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(a) Delayed coincidences of 10 min acquisi-

tion time, measured in the delayed window

(DW).

(b) Variance Reduced Randoms (VRR)

from the 10 min scan (in Figure (a)).

(c) Delayed coincidences of 8 h acquisi-

tion time, measured in the delayed window

(DW).

(d) Difference image of VRR and DW

method.

Figure 5.2.: Depiction of sinogram planes of a cylinder measurement. Figure 5.2(a)

shows a 10 min acquisition with the DW method, the same data are

processed with the VRR method and displayed in Figure 5.2(b). For

comparison, a 8 h acquisition of delayed coincidences is shown in Fig-

ure 5.2(c). The difference image of VRR and DW method is depicted

in Figure 5.2(d).
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Figure 5.3.: Histogram of difference between measured delayeds and VRR sino-

gram in logarithmic scale. Most of the bins show values close to zero.

The broad distribution of non-zero values is due to noise, as also visible

in Figure 5.2(d).

Figure 5.4.: Bias in random corrected images with low count sum. Quantitative

comparison in reconstructed images using DW and VRR method.
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Figure 5.5.: Sensitivity ratio of prompt and delayed window (DW) to random coin-

cidences. The fitted value of 0.96298±2.26 ·10−5 is in good agreement

with the computed value of 0.96194.

5.2. Attenuation Correction

The correction of emission data in PET for photon attenuation by tissue and

device materials within the FOV is mandatory in order to obtain homogeneous

and quantitative images. In general, the attenuation of photons depends on the

transmission length l and the electron density of the material (e.g. bone, soft

tissue, air, plastic) expressed by the linear attenuation coefficient µ. Furthermore,

it depends on the photon energy [18]. The intensity I(l) of a photon flux with

initial intensity I0 decreases exponentially with the thickness l of the travelled

path through material by

I(l) = I0e−
∫
L µ(E,l)dl. (5.4)

Two annihilation photons emitted in PET after positron decay may pass different

materials and thus may be attenuated with different probabilities. However, the

overall attenuation coefficient (AC) within a LOR defined by two detectors d1 and

d2, with L1 and L2 defining the distance from the annihilation point to detector

d1 and d2, respectively, reads

ACLOR = e
∫
L1

µ(l)dl
e
∫
L2

µ(l)dl
= e

∫
LOR µ(l)dl. (5.5)

Thus, the AC is invariant with respect to the exact origin of annihilation along the
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LOR does not effect the attenuation coefficient. As a consequence the attenuation

properties of each LOR are independent of the activity distribution within the

subject and depend only on the line integral of µ along L. The condition makes a

separation of emission and transmission properties possible, unlike in SPECT. This

is exploited in PET and PET/CT by measuring the transmission properties of the

subject for each LOR with external sources. Thereby, the attenuation correction

factor for a specific LOR is defined as

ACLOR =
I0

I(l)
= e

∫
LOR µ(l)dl. (5.6)

In conventional PET, the attenuation properties for each detector combination

are measured with transmission sources with positron emitters or gamma emitters

close to 511 keV. One or multiple rotating radiation sources are placed outside the

subject. For sources with energies different from 511 keV the attenuation factors

have to be scaled. For PET/CT, the x-ray CT data represent a transmission scan

at photon energies significantly lower than 511 keV. The CT image is converted

to an attenuation map by a piecewise linear mapping of the CT intensities [18].

Problems here are mis-positioning due to motion, truncation artefacts and the

proper scaling of the attenuation coefficients as a function of energy.

5.2.1. Attenuation Correction of Human Tissue

For hybrid MR-PET scanners, the hardware for transmission scans is not available

due to the limited space for a rotating transmission source and because moving

objects are prone to cause artefacts in the MR images. Consequently, the individ-

ual correction factors need to be derived from MR images of the scanned subject.

However, the MR images represent proton densities weighted with relaxation times

of the excited spin ensembles, rather than electron density. Thus, computing the

AC from MR images requires advanced procedures. Up to now, several different

approaches exist to assign an attenuation coefficient to each voxel in the PET im-

age space. So far, these procedures have different advantages and disadvantages

regarding, for example, accuracy or robustness. Since this extensive topic of on-

going research is beyond the focus of this work, the methods currently discussed

in the literature are presented shortly.

One approach is the combination of local pattern recognition and atlas registration

to predict pseudo CT images. A knowledge based segmentation approach applied

on T1-weighted MR images examines the tissue membership and position and seg-

ments differing regions [40, 10, 11, 89]. Another method focusing on the bone-air
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segmentation from MR images applying a dual echo UTE sequence (DUTE) for

imaging of the head [48, 20]. With the ultra short echo time, even solid structures

as the case of the RF coil, but also the desired bone structure become visible. Also

the extraction from attenuation information from emission data is possible [84]. A

template-based approach applying a PET transmission scan template by adapt-

ing it to the individual subject’s head uses warping algorithms [82]. The method

avoids scaling of attenuation coefficients as a function of energy, since a transmis-

sion template is used. On the other hand, individual anatomical structures of the

subject may not be addressed as accurately as with other methods. However, the

templates are used in routinely performed human studies with great success and

excellent practical usability. Since all of the currently presented procedures have

still shortcomings, the development of MR based attenuation correction is still in

progress [39, 49]. Maybe the combination of features holds the potential for a

more general but practical approach. A prerequisite is the further development

and optimisation of MR sequences for bone-air separation.

5.2.2. Attenuation Correction of RF Coil

In hybrid MR-PET imaging, not only the subject itself causes attenuation, but

also the RF coils located between the subject and the detector. The attenuation

map that needs to be applied to account for the attenuation of the RF coil has

to be found only once. It is not subject or scan dependent assuming the accuracy

of repositioning within the limits of the detector resolution. For some clinical

applications, mostly whole body MR-PET, the attenuation optimised surface coils

are neglected, compared to the severe attenuation of the body [98]. However, is has

been reported that these coils can cause streak artefacts [59] and the data should

be corrected for the effect of these local coils in whole body applications [73].

Especially for the BrainPET, the correction of the solid head coil with its regular

structure and its fixed position is a prerequisite for artefact free images.

Besides the exact registration of the coil template, the determination of the correct

attenuation coefficients are a prerequisite for obtaining artefact free images. For

the correction of the RF coil with its sharp structures, it is crucial to account for

the locally varying image resolution. Adaptions for manipulation of a measured

coil attenuation map are:

• Find best position of the coil template (CT or HR+)

• Model image resolution appropriately
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• Scaling attenuation values

(a) 3T MR headcoil (b) 9.4T MR headcoil

Figure 5.6.: Different shapes and materials for head coils, as applied in the 3T (a)

and 9.4T (b) MR-BrainPET scanners.

Two attenuation maps were analysed here for coil correction. One was acquired

in a transmission scan with the Siemens HR+ scanner. It has the advantage of

the correct photon energy of 511 keV, but the disadvantage of a resolution of

about 10 mm at the relevant structure (see Figure 5.7 (c)). The second template

was acquired with an x-ray CT, which has a much higher reconstructed image

resolution but on the other hand is measured at much lower photon energy (see

Figure 5.7 (a)). So both of the templates are not optimal to correct for 511 keV

photons at a resolution of 3 to 5 mm for the BrainPET. Several filters and scalings

have been applied in order to find the optimal coil template values.

The best performance compared to the standard approach of directly using a tem-

plate measured with the HR+ scanner was achieved applying the scaled HR+

template by a factor of 1.6. For this, it was possible to further improve the image

quality. However, compared to PET measurements without a coil within the FOV,

there is still some room for improvement, e.g. considering the Compton scatter in

the model for the coil.

5.3. Compton Scatter Correction

Annihilation photons emitted within a subject pass tissue before their detection

(Section 2.3.2). By interaction with an electron from the outer shell of the tissue
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Figure 5.7.: Attenuation maps of RF headcoil in Figure 5.6(a) showing a CT scan

(a), the HR+ transmission scan scaled by factor 1.6 (b) and the mea-

sured HR+ transmission scan (c).
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atoms the photon is deflected and loses energy. The main fraction of the photons

are scattered forward with only a slight loss of energy. Photons with a severe

change in direction associated with a high loss of energy may be rejected due to

the detectors energy discrimination. The effect of Compton scattering is dominant

in PET and results in a decreased image contrast. Due to the limited energy reso-

lution of the PET detectors, not all scattered events can be rejected without losing

unscattered 511 keV photons. Thus, simulations have to be performed to estimate

correction terms. In standard 3D acquisition mode, for which the scatter fraction

is 30 to 50 % scatter simulation is challenging. A computationally fast 3D Single

Scatter Simulation (SSS) algorithm estimates the expected single scatter coinci-

dence rate within the detector pair where only one of the two coincidence photons

is assumed to be scattered. Higher order scatter is less likely to appear, especially

in brain scans. The scatter distribution in the scatter volume is computed by the

volume integral of a scattering kernel over the scattering medium.

The cross section for the corresponding energies is derived from the Klein-Nishina

formula [102, 103]. The detection efficiency is dependent on the angle of incidence

as well as on the energy. Therefore the normalisation of true coincidences is not

valid for scattered events.

Figure 5.8.: Bias in scatter corrected images with low count sum (blue bars), com-

pared to the images without scatter correction. The plot shows the

relative deviation of each series from its 3600 s measurement (grey

bars).
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In order to assess the robustness of the scatter correction against statistical un-

certainties, an experiment was performed to see the quantitative accuracy of the

scatter estimation. The cylinder filled with 68Ge is measured in listmode and sub-

divided into frames of different length. The longest frame contains the counts of

3600 s and the shortest one only 5 s (see Figure 5.8). The data is reconstructed

applying two procedures, one without scatter correction (grey bars) and one in-

cluding scatter correction (blue bars). The reference for each series is the 3600 s

measurement. A bias in scatter corrected images with low count sum, compared

to the images without scatter correction is up to 29 % [107]. This appears only

in very short frames in the cylinder measurement and has not been observed in

human studies in this extend. Nevertheless, the correction should be improved in

future developments to overcome the quantification error in low count sum frames.

The scatter simulation assumes a true emission image as input, which, however,

can only be computed with knowledge of the true scatter distribution. Thus,

several iterations of reconstruction and scatter simulation are required in order

to approach the unbiased scatter distribution and to reconstruct the appropriate

emission images. The first emission image, which is not corrected for scatter,

shows an overestimation of the activity in the centre of the object and, thus, the

scatter based on this image is overestimated in this region. The image subtracted

for scatter suffers from an underestimation of activity in the reconstructed image

(Figure 5.9, 1st iteration). Subsequently, this image given as an input to the 2nd

scatter simulation leads to an underestimation of scatter (Figure 5.9, 2nd iteration).

With increasing number of iterations of reconstruction and scatter estimation the

oscillation around the true estimation is damped and acceptable values are achieved

after 3 to 5 iterations in case of the cylinder as shown in Figure 5.9, red curve.

However, the iterations of the scatter simulations are computationally extensive

and time demanding, which is not practical in clinical routine of dynamic acqui-

sitions with multiple frame reconstruction. A shortcut to a true estimation is the

computation of a more correct emission image by averaging the overcorrected im-

age from iteration 1 and the undercorrected image from iteration 2 and giving

this as the input of the scatter correction [42]. This leads to a more stable solu-

tion in the subsequent iterations dampering the oscillations and leading to a faster

convergence (see Figure 5.9, black curve).
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Figure 5.9.: Mean image intensity as function of reconstruction cycle. The values

are given as mean and standard deviation of the intensity distribution

among the reconstructed cylinder image. The red curve shows the

standard procedure using the output of the prior iteration as input

for the next one, whereas the black curve shows the outcome, when

at iteration 3 the input is computed by averaging output of 1 and 2.

(Data points are slightly shifted for better visualisation)
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5.4. Normalisation

The thousands of crystals mounted on several rings around the FOV exhibit vary-

ing sensitivities. Combining crystals with varying detection efficiencies results in

LORs with inhomogeneous detection efficiencies among the detector. In theory,

different components of efficiency can be identified and described. The crystal de-

tection efficiency εi represents the manufacturing variance whereas the geometric

component gi,j describes the different sensitivity of a LOR due to different angles

between the crystal surface and LOR. The differences in the geometric component

can be seen clearly in Figure 5.10, where direct opposing heads (Figure 5.10(a))

and oblique opposing heads (Figure 5.10(c)) were in coincidence, showing differ-

ent shading patterns. The procedure to correct for these sensitivity variations is

referred to as normalisation. A normalisation factor n for the sensitivity within an

LOR or sinogram bin is composed of

ni,j =
1

εi · εj · gi,j
. (5.7)

For the correction of all measured channels, an LOR-file or sinogram with a cor-

rection value for each channel is provided. Variations with changing countrate

may also be considered in a dynamic normalisation ndyn, which accounts for the

deadtime db of each detector block b and pileup p effect (see Chapter 5.5) [7]

ndyn,i,j =
ni,j

d(bi) · d(bj) · pi · pj
. (5.8)

Computing the normalisation factor for a sinogram bin, the sum of correction

values has to be build before inversion, as described in Chapter 5.5.3. In more

sophisticated models, true and scattered coincidences have distinct normalisation

coefficients [7, 9].

Shortcomings or inaccuracies in the normalisation lead to severe image artefacts.

The validity of normalisation is a matter of dailyQC and has to be controlled

carefully.

A plane source measurement is applied to acquire the normalisation data for the

BrainPET. An homogeneous source is measured in 16 different positions (due

to the 32 cassettes of the BrainPET), stepped by an airmotor. The data from

the 16 different views is merged into one LOR file, taking the data from LORs

most perpendicular to the plane source of every view. In constrast to a cylinder

measurement, this method has the advantage that the entire FOV can be covered

while keeping the scatter fraction at a minimum.
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(a) Geometric component g of LORs from di-

rectly opposed heads with homogeneous illu-

mination.

(b) Geometric component g of LORs from

oblique opposed heads showing shading pat-

tern.

(c) Crystal efficiencies ε extracted from the component based normalisation.

Figure 5.10.: LOR values of head pairs of plane source based normalisation showing

864× 864 values. The symmetries are used to extract the geometric

component of the component based normalisation (CBN). They are

separated from the crystal efficiencies ε.
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Practically, two different concepts for processing of the normalisation scan exist,

the direct normalisation (DN) and the component based normalisation (CBN). For

DN all LORs are illuminated with a homogeneous source and the normalisation

factors are assumed proportional to the ratio of expected counts to measured counts

in each LOR [69]. Here, the normalisation coefficients ni,j are measured directly

and the model is not fully exploited. Due to limited acquisition time normalisations

processed with the DN procedure suffer from a high noise level in each channel,

which directly propagates into the images.

A more accurate concept is the CBN, which distinguishes between the individual

crystal efficiency εi and the geometric component g(i, j). The two components are

obtained from the same normalisation scan, however the geometry of the scanner

can be exploited. For the extraction of g(i, j), the symmetry of LORs is used in

a way that all LORs with rotational or mirror symmetry are averaged in order to

have a noise reduced estimate of the geometric component. The crystal efficiency

εi can be obtained from the sensitivity of one crystal in all LORs. This also gives

a variance reduced estimate for εi. With this procedure, the final norm file is

computed applying Equation 5.7.

For the evaluation of the DN and CBN, a 68Ge-cylinder phantom with an activity

of approximately 50 MBq has been measured for 24 hours within the scanner.

Head coils have been removed here to avoid further sources of artefacts. Image

reconstruction applying attenuation, random and scatter correction is performed

using DN and CBN, respectively. Both images were reconstructed using 2 subsets

and 32 iterations (see Figure 5.11). The intensity values in the uncalibrated images

are given in arbitrary units (a.u.). To assess the noise level in the images, a ROI

was drawn with the size and position of the attenuation template of the cylinder.

The coefficient of variance (CoV) as the standard deviation divided by the mean

value served as the quantitative measure for noise in the image.

The images reconstructed applying the DN exhibit a higher noise level (CoV of

10.1 %) than the reconstruction with the CBN (CoV 8.9 %). Since the mean in-

tensity values do not show significant differences (3.321 DN, 3.318 CBN) and the

image reconstruction time is identical for both methods, the CBN is recommended

to be used in the standard procedure. Interestingly, due to a suboptimal setup, the

normalisation scan cannot cover adequately the inhomogeneities and the resulting

images suffer from artefacts. This is true for DN as well as CBN corrected images.

Performing a new setup, these effects have been significantly reduced.
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Figure 5.11.: Comparison of direct and component based normalisation in the re-

constructed images. The noise level of the CBN is clearly reduced

compared to the DN. With reduced noise, image artefacts are clearly

visible and may be analysed further and have been reduced by the

new setup (Section 4.2.3) as it can be seen in Figure 6.2.

5.5. Dynamic Effects

Photo counting systems, such as PET and SPECT suffer from the reduction of

sensitivity at high countrates, since the capability of immediately processing subse-

quent events is limited. With increasing countrate, this becomes more pronounced.

[109, 24]. Scanner designs take care to provide fast detectors and electronics with

good capabilities in the high countrate regime [67, 6]. This, however, remains a

trade-off between performance and costs. It is known that for commercially avail-

able PET scanners the deadtime effect is significant and additionally can vary for

different detector blocks among the scanner. As described, the quantitative ac-

curacy has to be achieved at all countrates of interest. For most human scans,

the quantification during a high dynamic range of countrates is important, espe-

cially for studies which apply 11C or 15O with their short half lifes. Furthermore,

deadtime and pulse pileup in PET scanners is influenced by the radioactivity dis-

tribution [24]. This justifies the effort of modelling these dynamic effects more

accurately than a global scaling of the reconstructed images.

In order to obtain artefact free and quantitative images at a large range of coun-

trates a method is designed which combines the corrections for deadtime and pulse
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pileup as a function of unqualified singles on block level (CFD). An exponential

correction model has been proposed to describe the deadtime of a PET scanner

on block level [24] and adapted by a quadratic correction approach [97]. This has

been extended to take into account also the mispositioning of events due to pulse

pileup [9].

5.5.1. Global Deadtime Correction

Conducting and evaluating a cylinder phantom decay experiment with a high

concentration of 18F dissolved in water (half life of T1/2 = 109 min) shows the

global deadtime effect quantitatively (see Figure 5.5.1). The cylinder is axially

and transaxially centred within the FOV and measured without MR coils to de-

scribe the effect for each detector block avoiding attenuation and scatter of photons

on the coils. The measured total coincidence countrate as a function of acquisi-

tion time during the decay experiment exhibits increasing deadtime effect at high

countrates at beginning of the decay experiment. The ideal countrate is not af-

fected by deadtime. It is obtained by extrapolating the measured countrates from

prompt coincidences at the end of the experiment, since deadtime is assumed to be

negligible at very low countrates. The behaviour of an ideal scanner is modelled

by extrapolation of low countrates with an exponential function, inversely to the

radioactive decay.

(a) Decay experiment with measured (black)

and ideal (red) headcurve.

(b) Deadtime correction factor as function of

CFD singles.

Figure 5.12.: From a decay experiment with measured (black) and ideal (red) head-

curve the decay correction factors (DCF) can be derived.

The ratio of the two curves represents the deadtime effect for every time point of the
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decay experiment. The inverse ratio can be applied as a global deadtime correction

factor (gDCF). When the overall CFD countrates serves as a reliable measure for

the total activity in the scanner, the gDCF can be expressed as a function of the

CFD countrate. This method can now be applied to scale the reconstructed image

in order to account for the global effect of deadtime. However, this approximation

is only valid at countrates close to the acquisition countrates of the normalisation

scan.

5.5.2. Blockbased Deadtime Correction

Figure 5.13.: Implementation of the block-based deadtime correction, derived from

a decay experiment with a cylinder filled with 18F-water (a). The final

correction factor is expressed as a function of the current CFD rate

of the single block (d).

When analysing the individual behaviour of different detector blocks during the

decay experiment in more detail, it can be seen clearly that different blocks behave

differently. The global correction factor is an average value, especially when counts

of an off-centre positioned phantom are acquired (see Figure 5.14(a)). The ratio of

counts is not constant during the decay experiment for all blocks. In consequence,
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deadtime is now modelled for each single block, applying the method for global

correction now for each single detector block (Figure 5.13). Finding a stable point

of extrapolation at low countrates is more demanding. The assumed exponential

decay function is fitted to the part of the measured curve at negligible deadtime

to find a more robust value for extrapolation. The deadtime correction factor as

a function of the CFD block counter ρk is fitted with a polynomial of degree 2

(or optionally degree 3, which is not implemented for the BrainPET) and the fit

parameters are extracted. Knowledge of these parameters for every block allows for

online computation of deadtime correction values during the framing of arbitrary

phantom or human studies according to

dk(ρk) = ak,0 + ak,1 ρk + ak,2 ρ
2
k (+ak,3 ρ

3
k) with k = 1 . . . 192. (5.9)

The implementation of sensitivity correction together with the normalisation in

sinogram space is described later in section 5.5.4.

5.5.3. Pileup Correction

In Figure 5.14(c) the remaining effect can be observed with a similar pattern for

every detector block. A dynamic correction factor for each crystal (Ncrys = 27648)

cannot be extracted from crystal headcurves, since the acquired countrates per

crystal are small and suffer from severe statistical fluctuations at low countrates.

A robust extrapolation of these data is not achievable. Thus, the pileup pattern for

each block is extracted to describe the shift of crystal efficiencies as a function of

countrate. Therefore, detector hitmaps with equal number of counts (i.e. the same

number of prompt events) are extracted from the listmode data. To fill maps with

the same count sums at decreasing countrates, the frame lengths increase. The data

points have the same statistical properties and thus the fit has the same accuracy

in every data point. Subsequently, crystal counts on each block are normalised to

their block average value to exclude the block deadtime effects, which are already

taken into account. The resulting map shows relative crystal counts on block level.

As reference for the activity within the FOV again the CFD block counters ρk are

used. The relative sensitivity for each crystal j is fit with a linear or optionally

a polynomial of higher degree and expressed as a function of the CFD countrate

of its block. The inverse of the relative sensitivity changes can correct for the

mispositioning of counts due to pulse pileup

pj(ρk) = b0 + b1 ρk (+b2 ρ
2
k). (5.10)
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(a) Ratio of detector hitmaps applying global correction factor. The map shows the ratio of number

of coincidences for each single crystal at high and low countrate.

(b) Hitmap of blocks applying a global correction factor as depicted in Figure 5.14(a). For better

visualisation of the block effect, the block average counts are computed.

(c) Hitmap of detector after block based deadtime correction. The map is more homogeneous

compared to the global correction approach. A remaining pattern similar for all blocks is visible,

showing a reduced sensitivity for corner and edge crystals.

Figure 5.14.: Average block pattern with the 12×12 crystal matrix before (a) and

after correction for the pileup effect (b). The inhomogeneities have

been reduced, especially at the corner and edge crystals.
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Again, the implementation of sensitivity correction together with the normalisation

in sinogram space is described in section 5.5.4.

The correction of the effect can be seen in the hitmap of Figure 5.15 and as a

block average in Figure 5.16. The improvement in homogeneity of the crystal

efficiency in the maps Figure 5.14(c) and 5.15 is shown in Figure 5.17. Due to

the computation of the ratio of the two hitmaps, the static normalisation factors

cancel out in this representation.

Figure 5.15.: Hitmap after blockbased deadtime and pileup correction. Both, the

blockwise variations and the crystal wise shifts are significantly re-

duced compared to the global correction.

(a) Average block before pileup correction (b) Average block after pileup correction.

Figure 5.16.: Average block pattern with the 12×12 crystal matrix before (a) and

after correction for the pileup effect (b). The inhomogeneities have

been reduced, especially at the corner and edge crystals.
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Figure 5.17.: Histogram of relative crystal efficiencies with global correction (black

curve) and after blockbased deadtime and pileup correction (red

curve).
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5.5.4. Implementation of Sensitivity Correction

The primary goal of the combined deadtime and pileup correction is the accurate

correction of the global deadtime effect. Fluctuations on block and crystal sensi-

tivity are important to be corrected to eliminate artefacts, but must not degrade

the overall quantitative accuracy. Furthermore, the sinogram correction has to be

implemented carefully, since averages of sensitivities are merged into a dynamic

normalisation, which is discussed in the following. The dynamic sensitivity sdyn of

the crystal i during the time frame from ta to te contains the product of block-wise

deadtime correction ddt and the pileup correction dpu value

sdyn,i(ta, te) =
1

te − ta

te∑
tx=ta

dk(ρk(tx))pi(ρk(tx)). (5.11)

Since the deadtime is not modelled as a linear effect, the average of the deadtime

is not equal to the deadtime of the average CFD rate, even though, errors within

one frame are small. As described, the dynamic normalisation factor (ndyn(ρ)) as

function of the block dependent CFD rate (ρ) for one LOR combining the crystals

i and j reads

ndyn,ij(ρk, ρl) =
ni,j

sdyn,i(ρk) · sdyn,j(ρl)
. (5.12)

Here, the crystals are mounted on the block bk and bl with the respective deadtime

and pileup effects. The static normalisation factor for the channel defined by

crystals ci and cj is nij,stat as computed by the CBN. It is important to note

that the CFD countrate at which the normalisation factors are acquired has to be

considered. However, this is not implemented in the current software version.

As described in Section 2.5.2, it is important to model the sensitivity effects in the

normalisation in order to preserve the Poisson nature of the prompts acquisition

data. Therefore, OP-OSEM treats the correction factors in the normalisation file

separately from the projection data.

In sinogram space the sorting of adjacent LORs into the same sinogram bin has to

be considered. This dynamic deadtime and pileup correction factors are combined

with the CBN. However one sinogram bin contains the sum of the inverse of up to

12 LORs. It is not equal to the sum of the inverse sensitivity

1∑NLORs
i=0 si

6=
NLORs∑
i=0

1

si
, (5.13)
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the combination of normalisation factors has to be performed in LOR space rather

than in sinogram space in order to compute the correct normalisation factors. From

this LOR-file with the countrate dependent sensitivity of each channel, the sorted

normalisation sinogram is generated and has to contain the inverse dwell-pattern.

The countrate dependent normalisation file is computed as follows:

i) The LOR file with the deadtime and pileup pattern is multiplied with the

normalisation CBN LOR file.

ii) The conversion to a frame specific norm sinogram is achieved by cutting

extreme values (upper and lower percent), converting to sinogram and scaling

to a mean of 1.

iii) The scale factor is multiplied later on to the calibration factor. Since nor-

malised CBN sinograms are assumed to be corrected for dwell, the inverse

dwell pattern is inserted to the normalisation file as a double dwell-correction.

5.6. MRI-Interference Correction

Based on the results on how the MR measurement influenced the PET countrate

(Section 4.4), an offline correction method was developed, implemented, and tested.

It comprises a set of corrections for standard clinical MR sequences provided by the

manufacturer and applied in human MR-PET studies in our institute. An overview

with more detailed information on MR sequences, including those analysed here

can be found in [12]. The average prompts countrate reduction in percent ∆P for

standard sequences referenced here are as follows:

• localizer (short overview measurement, 2D gradient echo acquiring three or-

thogonal slices, TR/TE = 22ms/5ms)

∆P = −0.81± 0.02.

• MP-RAGE (T1-weighted anatomical sequence, gradient echo based,

TR/TE = 2000ms/1.29ms)

∆P = −0.77± 0.017.

• UTE (ultra short echo time, T2* weighted image for bone detection,

3D dual-echo radial centre out projection acquisition,

TR/TE1/TE2 = 200ms/0.07ms/2.46ms)

∆P = −1.48± 0.13.
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• EPI (echo planar imaging, applied in fMRI, TR/TE = 1450ms/49ms)

∆P = −1.03± 0.081.

• FLAIR (T2 weighted anatomical measurement, 2D spin-echo based

TR/TE = 9490ms/109ms)

∆P = −0.32± 0.025.

• DTI-1 (diffusion tensor imaging; EPI readout with additional (strong)

diffusion weighting gradients TR/TE = 7900ms/99ms,

diffusion b-value= 1000s/mm2)

∆P = −1.17± 0.092.

• DTI-2 (see DTI-1, reference scan without diffusion weighting)

∆P = −0.98± 0.043.

Based on the evaluation of the influences and the high reproducibility of the ef-

fects, a correction method was designed, implemented and evaluated. The method

provides a time-dependent, global correction factor for each MR sequence which

is stored as a lookup-table (LUT). This LUT is obtained from a phantom study

with an [18F]-water filled cylinder (Figure 5.19). The countrate during the MR se-

quence is approximated by a polynomial or a sine function, depending on the MR

sequence. The expected countrate is estimated by extrapolating the adjacent PET

countrates without MR acquisition to the time during MR acquisition. Finally,

the ratio of expected and measured countrate gives the time dependent correction

factor (Figure 5.19). This procedure is performed with the set of clinical MR se-

quences applied in human studies. The temporal synchronisation of MR sequences

and the PET listmode data is achieved by using the MR trigger signal, as applied,

for example, in combined EEG and fMRI studies. This signal is sent for each TR

with a precision of 10µs and is passed to the listmode. Thus, a sufficient temporal

accuracy of synchronisation is assured. It is possible to correct the listmode data

by applying the factors stored in the LUT before sorting. However, in order to

preserve the Poisson characteristics of the emission data and to minimise the noise

in the reconstructed image, the correction factor is included in the normalisation,

similar to detector deadtime [63] for the standard procedure. Performance of the

correction method is shown for the two standard sequences, MP-RAGE and UTE,

which were applied during the PET data acquisition of a cylinder phantom with

14 cm diameter and filled with 18F diluted in water (see Figure 5.18). The same

countrate for true coincidences is shown in Figure 5.20 but now corrected for the
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MR influences. In both plots the global slope is due to the decreasing radioactivity

of 18F (half life of 109 min).

Figure 5.18.: Uncorrected PET headcurve of the 18F-cylinder measurement with si-

multaneously acquired MP-RAGE (left) and UTE (right) sequences.

5.7. Decay Correction

The labelled molecules injected within the subject’s body have a constant num-

ber. However, the number of radioactive nuclei, and with them the traceable

molecules, are reduced due to the radioactive decay. Therefore, the number of de-

tected molecules to be traced at a specific time of the scan has to be re-weighted,

in order to represent the same distribution as if it would have been scanned at an

early time of the measurement. This correction is referred to as decay correction.

The physical decay is described by an exponential law with a nuclide specific half-

life. It follows Equation 2.3 and for correction the inverse exponential function has

to be applied.

For frames with the duration ∆t with the acquisition start time ta after start of

measurement, the decay correction factor α reads

α =
λ eλta ∆t

1− e−(λ ∆t)
, (5.14)

as derived in the Appendix A.
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Figure 5.19.: MR correction values for MP-RAGE (left, 80 s – 210 s) and UTE

(right, 320 s – 460 s) sequence.

Figure 5.20.: Corrected PET headcurve of the 18F-cylinder measurement with si-

multaneously acquired MP-RAGE (left) and UTE (right) sequences.

The applied correction values are the ones depicted in Figure 5.19.
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5.8. Image Reconstruction

Applying the OP-OSEM reconstruction algorithm, the number of iterations and

subsets has to be defined. It is known from the literature, that convergence of

the OSEM algorithm in the presence of noise is not guaranteed. Reconstructing

images with a higher number of subsets is prone to image artefacts, since the so-

lution of the algorithm starts oscillating from iteration to iteration in the presence

of systematic uncertainties of the corrections. For a reasonable number of subsets,

this effect is rather small, as shown for a cylinder study in Figure 5.21(a) and (b)

comparing 1 and 8 subsets. The difference image in Figure 5.21(c) shows minor

structural differences. However, in the extreme case of 32 subsets which corre-

sponds to the number of detector cassettes severe image artefacts become visible

Figure 5.21(d). Since the data are corrected and reconstructed offline, the extend

Figure 5.21.: Effect of increasing number of OSEM subsets. The total number of

ML-EM iterations is always 128. Image (a) is reconstructed with 1

subset, 128 iterations, image (b) with 8 subsets, 16 iterations. Figure

(c) shows the difference image of (a) and (b) indicating minor sys-

tematic structures. Image (d) was reconstructed with 32 subsets and

2 iterations. The artefacts are clearly visible.
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on reconstruction time for the lower number of subsets is not a critical restriction

when image artefacts can be reduced with this approach. Thus, it is recommended

to apply not more than 4 subsets. The default value for standard reconstruction is

set to 2 subsets. The number of overall ML-EM iterations is crucial in combination

with the correction terms such as scatter and random correction and, furthermore,

depends on the object itself. This is evaluated in detail in the Chapter 6.

5.9. Image Calibration

Calibration is the procedure of translating the image intensity value with the arbi-

trary unit of pseudo count per second (cps) into an activity concentration within

the subject (Bq/ml or kBq/ml). The calibration is vital to quantify the metabolism

within one subject, but also to compare subjects within a longitudinal study or to

compare different studies acquired with different scanners.

Therefore, a measurement with an 18F filled cylinder of known activity concentra-

tion (verified with a calibrated wellcounter and dose calibrator) is measured and

reconstructed with the standard procedure applying all corrections. The image

intensity values in a defined ROI are compared to the measured activity concen-

tration with the wellcounter. The values for a series of 9 subsequent calibration

measurements acquired over 9 weeks are depicted in Figure 5.22. The verification

of the stability of a previously determined calibration factor is one component of

quality control and the long term stability of the scanner.

In the example of Figure 5.22 the calibration factor is verified with the above

mentioned procedure. The calibration factor is determined to be 0.9901± 0.0101

of the nominal value of 72,000 kBq/ml/cps. As consequence, the calibration factor

should be adapted from 72,000 kBq/ml/cps to 71,287 kBq/ml/cps even though the

error is still in a tolerable range for clinical application.
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Figure 5.22.: Verification of calibration factor in 9 subsequent measurements ac-

quired over 9 weeks (solid red curve). The uncertainties in comparing

activity concentrations is shown by the ratio of wellcounter and dose

calibrator values of the same probe (solid black curve). The deviation

from the current calibration factor is fitted with χ-square method to

the measured data (dashed red line). The blue line shows the verifi-

cation of the calibration of the HR+ scanner with the same phantom

measurements, providing a cross calibration of the scanners.
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5.10. Image Reconstruction Framework

To provide a stable clinical environment for human studies, the components for

framing, precorrection, image reconstruction and finally calibration have been in-

tegrated in a workflow. In the design of the workflow the following aspects have

to be optimised:

• Minimal Data Processing and Image Reconstruction Times

• Minimal Computational Burden (Standard Desktop Computer)

• Minimal Disk Space Usage

• Minimal User Interaction

• Optimal Quality Control

After data acquisition and transfer of PET listmode data and MR images to the

central data storeage, the listmode data are framed according to the study proto-

col. Here, the relevant information for each frame is extracted, namely the start

time and framelength for decay correction (Equation 5.14) and the CFD coun-

trate for the individual block for deadtime and pileup correction. Furthermore,

an LOR file for prompt coincidences and a hitmap for delayed singles (DCMAP)

is generated. From the DCMAP, the VRR LOR-file and sinogram are generated.

Optionally, a first image is reconstructed (imagen), reconstructing prompts cor-

rected for randoms and normalisation only (OP-OSEM, 4 subsets, 16 iterations).

This image can be used for the verification of co-registration of the attenuation

map and can serve as a very first quality control. The correction factors of the

blockbased deadtime correction and the pileup correction are expressed as a func-

tion of CFD countrate and a combined correction is computed for each individual

LOR. Since the LORs are histogrammed for the sinogram based reconstruction

[41].

The attenuation properties for the subject and the MR RF coil are merged in

image space and projection space. Therefore, the mumap from patient’s head and

of the MR coil are merged and forward projected into sinogram or LOR space for

sinogram or LOR reconstruction, respectively. Due to the multiplicative character

of normalisation and attenuation, the forward projection of the coil map can also

be included in the normalisation sinogram.

With this correction, an image which is corrected for random and attenuation is

reconstructed (imagena). After cutting the 200 highest values, which are noise
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Figure 5.23.: Workflow of the final image reconstruction process. In the presented

visualisation, the calibration includes the calibration factor and the

correction for global deadtime and decay.

94



CHAPTER 5. PROCEDURES FOR QUANTIFICATION OF PET IMAGES

voxels in the most upper and most lower image plane, this image serves as an

estimate of the activity distribution for the scatter simulation. The cutting of high

values is important for the scatter estimation software.

The subsequent step of scatter simulation [102, 103] results in a scatter sinogram,

which is now included in the last image reconstruction step, resulting in a fully

corrected image [62]. Here, the OP-OSEM approach is applied, with 2 subsets

and 32 iterations, equivalent to 64 ML-EM iterations (see Figure 5.23). After

cutting image planes 0 and 152, the global correction factors for radioactive decay

of the isotope (Equation 5.14), the global deadtime correction, the normalisation

of the framelength and the image calibration factor are applied. These (imagenas)

are calibrated in order to represent images in the quantities of Bq/ml. However,

for a more reliable estimation of scatter, this estimation has to be performed

iteratively 3 times (see Section 5.3). For convenience in file and data handling,

the image volumes are converted into the ECAT7 format which is a standard

in nuclear medicine besides the upcoming DICOM format. The ECAT image

includes valuable header information about the patient, the study and intermediate

correction steps during image reconstruction and is capable of storing multiple

frame data. With this workflow, a modular and convenient image reconstruction

procedure has been implemented, which furthermore allows for quality control on

different levels.
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6. Evaluation of Quantification for

PET Images

Parts of this chapter have been published in [104].

The quantitative accuracy is assessed with phantom and in vivo studies. Only

the selection of the performed experiments is given here that covers the aspects of

corrections comprehensively. It describes the entire reconstruction framework in

addition to the verification of its components, given in Chapter 5. The applicaton

of phantoms offer the advantage of a defined geometry and the activity distribution

is easy to control. Image artefacts and shortcomings of the quantification accuracy

are observed with variation of versatile parameters, such as countrate or geometry.

Reference probes of the activity concentration are measured for all experiments

with a calibrated gamma counter (Wallac Wizard 1480). The results of the phan-

tom studies are discussed in Section 6.1. These results are used to optimise the

reconstruction procedure for human studies.

The quantification of human studies is discussed in Section 6.2 applying the entire

reconstruction framework. The verification of in vivo PET imaging is demanding.

In contrast to phantom studies, it is not feasible to obtain the ground truth of the

tracer distribution. Thus, combined studies with the Siemens 3T MR-BrainPET

and the Siemens HR+ scanners were conducted in order to cross validate the

images. Together with the experience gained with extensive phantom studies the

results can be validated more accurately.

6.1. Evaluation with Phantom Studies

6.1.1. Dynamic Range

A PET scanner has to be capable of quantitative imaging at high dynamic of coun-

trates. This becomes important when applying tracers with short physical half life

compared to the scan time, as for 15O or 11C administered per bolus injection.
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These scans usually exhibit a very high dynamic, as observed in perfusion mea-

surements with 15O-labelled water. Depending on the radiotracer and on the study

design, the countrate can also be constantly high or constantly low, as observed

in 18F-FDG or 18F-FET steady-state scans, respectively. The static and dynamic

effects have to be corrected with the presented procedures prior to reconstruction

and calibration.

18F Decay Experiment

A decay experiment is designed to assess the quantification accuracy of the dynamic

range observed in human measurements. In contrast to the experiments perfomed

to derive the parameters for decay correction, the one pesented here apply the en-

tire reconstruction framework with all its corrections. The study accounts besides

the deadtime effect also for the reduced activity at later frames, which is already

presented in Section 5.3. Consequently, this study provides an independent cross

check of the optimised deadtime correction. A cylinder phantom of 14 cm diam-

eter and 20 cm length is filled homogeneously with 18F diluted water. The total

activity filled in the phantom was approximately 74 MBq. All determined activity

concentrations were corrected for radioactive decay to the start of the PET data

acquisition. The exact activity concentration at the start of the PET measurement

was determined with 3 weighted probes (500 mg) in a calibrated well-counter and

was found to be 18.01 kBq/ml ± 0.62 %. The cylinder phantom was positioned

within the PET FOV axially and transaxially centred within the RF head coil.

PET data of the decaying isotope were acquired over 6 half lifes of 18F (dynamic

range: 26 = 64) in listmode. The framing and reconstruction were done using the

standard reconstruction procedure. The reconstructed images (see Figure 6.1 and

Table 6.1) have been evaluated by ROIs of 12 cm diameter and 70 image slices,

corresponding to 87.5 mm for each frame.
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Figure 6.1.: Transaxial view of reconstructed images of the decay experiment. Left

image after 1 h, middle image after 5 h, right image after 10 h of the

PET acquisition start time. The duration of each frame was 1 h.

Figure 6.2.: Time-Activity-Curve (TAC) of the decay experiment applying a cylin-

drical phantom. The red curve shows the actual activity concentration

in the phantom, the black curve represents the decay corrected value

of the probe (constant) which is also the expected mean value in the

ROI of the reconstructed image. The actual mean value in the ROIs

is represented by the blue curve.

98



CHAPTER 6. EVALUATION OF QUANTIFICATION FOR PET IMAGES

Frame expected (kBq/ml) measured (kBq/ml) error from expected

value (%)

1 18.01 17.99 - 0.1

2 18.01 17.61 - 2.2

3 18.01 17.82 - 1.1

4 18.01 17.87 - 0.8

5 18.01 17.83 - 1.0

6 18.01 17.62 - 2.1

7 18.01 17.63 - 2.3

8 18.01 17.86 - 0.8

9 18.01 18.24 + 1.3

10 18.01 18.80 + 4.4

Table 6.1.: Decay experiment with a homogeneously filled cylinder (18F-labelled

water). All values are corrected for the radioactive decay of the isotope

to the start of the PET scan.

The error in mean value between well-counter and reconstructed image ranged from

-2.2 % for an early frame to +4.4 % for a late frame as visualised in Figure 6.2.

The standard deviation of the distributed values (given as CoV) ranged from 7.9%

for the highest count sum up to 35.2% for the lowest count sum. The tendency of

increased mean values in the last four frames with low overall count sum has also

been observed in other experiments. It is consistent with the findings in Section

5.3 and issue of further investigation.

18F-11C Decay Experiment

The accuracy of quantification in reconstructed images was further investigated

with a combined 18F-11C phantom study. The phantom consisted of two concen-

trically arranged cylinders with different diameters. The inner cylinder was filled

with an activity concentration of 84.54 kBq/ml of 11C diluted water, whereas the

outer cylinder was filled with 7.31 kBq/ml of 18F diluted water at the start of the

PET measurement. A measurement with an acquisition time corresponding to 5

half-lifes of 11C was performed. After acquisition, 10 frames of 10 min length each

(1/2 half life of 11C) were reconstructed and the ROIs according to Figure 6.3 were

evaluated.
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(a) Picture of a cylinder phantom transaxially cen-

tred within the MR head coil.

(b) Reconstructed image of the 18F-11C

decay experiment including the ROIs.

Figure 6.3.: Setup of the decay experiment (a) applying the two isotopes 11C and
18F in the cylinder phantom with two compartments (b).

This phantom study is especially challenging for the scatter correction with respect

to the varying ratios of activity concentration within the compartments. The decay

correction for each compartment together with the calibration was applied after

reconstruction. The expected decay curves of 11C and 18F were obtained from

the reconstructed images. The residual error ranged from -2.4 % to 4.7 % in the
11C-region and up to 2.6 % in the 18F-region. The quantitative values obtained

from the ROIs of the 18F-region and the 11C-region for each frame are depicted in

Figure 6.4 (a) and (b), respectively.
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(a) 11C compartment

(b) 18F compartment

Figure 6.4.: Time activity curves of the the two isotopes 11C (a) and 18F (b) in

the cylinder phantom with two compartments after appropriate decay

correction.
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6.1.2. Contrast and Convergence

A phantom study to analyse the image contrast and the quality of the correction

was performed with the two-chamber phantom (see Figure 6.5(a)). It mimics the

(a) Picture of the two chamber phantom. (b) Two chamber phantom reconstructed

with 200 ML-EM iterations.

Figure 6.5.: Study applying the two-chamber phantom to assess the contrast and

convergence properties of the reconstruction process.

transaxial view of the human brain segmented into grey matter (GM) and white

matter (WM). The aim of this study is to assess the contrast recovery in the recon-

structed image depending on the data corrections. Especially the convergence of

the image reconstruction depends on the contributing additive errors, such as scat-

ter and random fractions (see Section 2.5.2). In [18F]-desoxyglucose brain studies

of healthy volunteers, a GM/WM ratio of approximately 4:1 should be observed.

Thus, the two chambers were filled with 83.5 kBq/ml ±0.48 % in the GM com-

partment and with 20.1 kBq/ml ± 1.06 % in the WM compartment, determined

by 3 probes for each compartment, measured with the well-counter. This results

in a GM/WM ratio of 4.15:1 for the presented experiment. In human FDG brain

studies, a total activity of approximately 350 MBq of FDG is injected, resulting in

activity concentrations of approximately 40 kBq/ml in the GM and approximately

10 kBq/ml in the WM compartment, which is about half the concentration as in
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the presented phantom study. Consequently, a higher random rate is expected

here, which results in a later convergence of the OP-OSEM algorithm compared

to an FDG scan.

The images are reconstructed with the standard procedure. The contrast is de-

scribed as a function of ML-EM iterations and of the iterations of scatter correc-

tions. The evaluated GM/WM ratio in the reconstructed images are depicted in

Figure 6.6. Consistent with the findings in Chapter 5, the best performance is

found when applying 3 iterations of the scatter correction. A default value of 200

ML-EM iterations (equivalent to 2 subsets with 100 iterations or 4 subsets with

50 iterations) is recommended to obtain converged images.

Figure 6.6.: Contrast of GM/WM in the reconstructed image applying 1, 2 and 3

iterations of the scatter correction (red, black and blue curve, respec-

tively). The two-chamber phantom with the determined ratio of 4.15:1

between GM and WM compartment (dashed line) is approached best

at 200 ML-EM iterations applying 3 iterations of the scatter correction

(blue curve).
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6.1.3. Long Term Stability

Monitoring the stability is important for a PET scanner, since the results of studies

have to be comparable over a long period of time. This includes the detection of

immediate detector element failures, as well as slow drifts in crystal and block effi-

ciencies. Also the verification of the currently used normalisation and calibration

factor is an issue of quality control. A set of regularly performed measurements is

defined in the dailyQC in order to assess the current status of the scanner [105].

diameter and length, positioned axially and transaxially centred within the PET

FOV. The RF head coils were not located within the scanner. The phantom was

measured for 10 minutes on each working day. The measurement is corrected for

decay of the radioisotope and deadtime. Prompt and delayed coincidences were

evaluated to examine the temporal behaviour of each crystal. Deviations from a

reference taken at the day of the last normalisation scan are documented.

Looking at the mean count values of the crystals acquired in each dailyQC mea-

surement (see Figure 6.7), only minor fluctuations were observed. The variation in

the individual crystal counts, which are due to the unequal crystal sensitivity, are

given as the standard deviation for each measurement. Also, these values are suffi-

ciently constant. From an experiment with longer acquisition time, the sensitivity

has been extracted and is depicted in Figure 6.8. The sensitivity of corner and

edge crystals (red curve) has been compared to the one of more central crystals on

a block (black curve). As expected, the corner and edge crystal exhibit a reduced

sensitivity compared to the central crystals.

The evaluation of the temporal behaviour of crystal efficiencies during 34 weeks is

crucial in regards to validity of the normalisation. Here, the majority of the crystals

were found to be stable (see Figure 6.9). Looking at single blocks, an increase

in standard deviation was found to be more severe for corner and edge crystals,

characterised by red marked crystals on the map. However, these fluctuations were

measured during 34 weeks. They are much smaller for periods of 4 weeks and are

accounted for by a monthly normalisation scan. Secondly, the data presented are

acquired with a suboptimal setup, described in Section 4.2.3, to indicate the higher

fluctuations of corner and edge crystals. With the findings presented here, it is

stated that the BrainPET scanner is sufficiently stable for clinical studies.
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Figure 6.7.: Evaluation of the mean count sum (true + scattered events) detected

by the crystal during the dailyQC scans and the standard deviation

of these values, due to the non-uniform crystal efficiencies. The data

were acquired over 34 weeks.

Figure 6.8.: Distribution of sensitivity of corner and edge crystals (red curve) com-

pared to centred crystals of the detector blocks (black curve).
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Figure 6.9.: Temporal variations of crystal sensitivities evaluating dailyQC mea-

surements before the latest setup optimisation. Corner and edge crys-

tals show higher variances than central crystals. The data is given

as color encoded standard deviation from the mean value, assuming a

Gaussian distribution of sensitivities. Again, the data were acquired

over a period of 34 weeks.
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6.2. Human MR-PET Studies

With the results obtained from the detailed phantom studies together with the

long term stability it can be concluded that the PET scans in simultaneous human

MR-PET studies provide excellent image quality and accurate quantification. A

large variety of PET tracers has been measured together with simultaneous MRI

using the 3T MR-BrainPET. Four human scans applying different tracers are dis-

cussed in the following. Depending on the application, radiotracer and radioisotope

different aspects of corrections become prominent. The improvements observed by

the evaluation of phantom studies also improve the accuracy of human MR-PET

studies and are indicated for the presented applications. The medical or biological

interpretation of the studies is beyond the focus of this work.

6.2.1. [18F]-FET-PET/MRI Studies

The 18F-labelled amino acid O-2-[18F ]-Fluroethyl-L-tyrosine (FET) is a PET tracer

often applied for brain tumour studies. With a high uptake in cerebral gliomas and

low uptake in inflamatory cells and the cortex (see Figure 6.10), the tracer is more

specific than the widely used FDG [54]. Besides the spatial distribution, the time

response of the tracer is important since it allows, for example, the distinction

between local brain metastasis recurrence and radionecrosis with high accuracy

[29].

From a technical perspective, two cases have been observed when evaluating the

performance of the correction procedures for FET-PET scans with the BrainPET.

Scans with high FET uptake in the brain show mostly an uncompromised image

quality. However, in some cases with low uptake, which coincides with minimal up-

take in the assumed tumor region, artefacts have been observed. It was found that

shortcomings in the scatter estimation can lead to severe tracer underestimation

in some cases. This has been observed at scans performed with the suboptimal

detector setup and when only one scatter iteration has been performed [72]. A

sub-optimal setup which cannot be compensated completely with a current nor-

malisation scan, and the overestimation of scatter by applying only one scatter

iteration, this can lead to major image artefacts. In order to retrieve the data set,

the data has been recoverd partly by using 3 scatter iterations (see Figure 6.11).

In order to prevent further scans from this kind of shortcoming, the setup has been

optimised, as shown in Chapter 4.2.3. In addition, the 3 iteration cycles of scatter

correction is highly recommended also in the case of FET-PET scans.
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Figure 6.10.: The [18F]-FET-PET image (left) of a human brain showing the up-

take of the 18F-labelled amino acid in the brain tumor and low uptake

in the cortex. The middle image shows the anatomical T1 weighted

MP-RAGE image. The right image shows the fused PET and MRI

scans. The MR image provides the complementary anatomical infor-

mation to the metabolic activity in the PET image.

Figure 6.11.: FET patient study. When no enhanced uptake was observed in as-

sumed tumor tissue, the overestimation of the scatter becomes ob-

vious. This results in a profound underestimation of the activity

(upper row). After 3 iteration cycles of scatter correction, this effect

has been reduced (lower row).
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In order to assess the quantitative determination of the time response of the tracer

a study is presented, where a patient with glioma has volunteered to be scanned

in the MR-BrainPET before his diagnostic scan in the Siemens HR+ scanner.

The patient was injected 224 MBq of FET in the MR-BrainPET and the data

were acquired from the moment of injection for 55 min. The listmode data were

subdivided into 16 frames. After the scan the patient moved to the Siemens HR+

scanner, where further 4 × 5 min of PET data were acquired for diagnostic. The

time-activity-curves (TAC) of both scans have been compared. Here, the regions

of tumor, cortex and whole brain were evaluated for both scans. The HR+ images

were decay corrected to the start of the BrainPET scan. It shows that the HR+

images are in good agreement with the BrainPET images (Figures 6.12 and 6.13) in

terms of absolute quantification. The stronger fluctuations in the tumour regions

are related to the statistical uncertainties in the much smaller ROI and also due

to possible misalignment caused by patient movement.

Figure 6.12.: The data of 50 min acquisition are framed and reconstructed with a

duration 5 s at the beginning (after injection) up to 5 min towards

the end of the acqusition. The enhancement of FET tracer in the

tumour is much higher than in the healthy brain tissue.

Besides the high accuracy found in the phantom scans, the cross calibration can

be confirmed in in vivo MR-PET studies.
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Figure 6.13.: FET time activity curve of the reconstructed time frames acquired

with the BrainPET (first 18 data points) and HR+ (last 4 data

points). Blue curve shows the data in the arterial ROI (80 voxel),

red the cortex ROI (14000 voxel) and black curve shows the tumor

ROI (180 voxel). The statistical fluctuations and uncertainties due

to patient motion increase with decreasing ROI size.
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6.2.2. [18F]-FDG-PET/MRI Studies

The PET tracer [18F ]-Flurdesoxyglucose (2-Fluor-2-desoxy-D-glucose, FDG) is the

mostly applied PET tracer. It is a glucose analogue and used to visualise the local

glucose metabolism, i.e. tracer uptake and phosphorylation by the living cells. Af-

ter injection the FDG is transported into the cells. The successive phosphorylation

prevents the molecule to be released from the cell. However, due to the replacement

of the hydroxyl group (OH) by the 18F-atom, it cannot be metabolised further.

The FDG molecule is trapped in the glucose consuming cell and the positron

emitting tracer enhances over time. This mechanism is referred to as metabolic

trapping. FDG images represent the glucose consumption rate as depicted in Fig-

ure 6.14, showing the reconstructed acquisition data of 20 – 50 min post injection.

The patient suffering from Alzheimers desease (AD) was scanned in the 3T MR-

BrainPET and subsequently in the Siemens HR+ scanner. Comparing the images

of these two scanners, the better delineation of the cortex which is achieved with

the BrainPET can be clearly seen.

The ratio FDG uptake in GM and WM is usually in a ratio of approximately 4:1

and should be reflected in the image. Compared to whole body scanners, the high

resolution of the BrainPET allows for a high delineation of the cortex and other

glucose consuming stuctures in the brain. The uptake of FDG in the human brain

leads to moderate countrates of approximately 300 – 400 kcps (trues + scatter)

with a decelerated convergence of the ML-EM algorithm compared to FET-PET.

For the countrates achieved in human FDG studies, the correction procedures

perform well. Also the dynamic range of the studies was well covered by the

dynamic correction for deadtime as analysed in detailed phantom studies before.

The images depicted in Figure 6.15 indicate the image quality in the FDG scan

applying 3 iterations of scatter correction. Especially the higher number of ML-

EM iterations (128 compared to 64) lead to a higher contrast and thus to a better

separation of GM and WM. The vertical streak artefacts, present in early studies,

have been reduced by an improved setup and the adaption of the coil template

(more obvious in Figure 6.17). The quantitative combined BrainPET/HR+ study

is assessed in Figure 6.16. Again, the data of BrainPET and HR+ are qualitatively

and also quantitatively in good agreement, indicating the in vivo comparability of

the data sets.
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Figure 6.14.: The first row shows anatomical MP-RAGE image. The middle row

shows the glucose consumption in the [18F]-FDG-PET images ac-

quired with the BrainPET. For comparison, the same patient was

scanned in the HR+ scanner (lower row).
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Figure 6.15.: Human 18F-FDG study: Comparison of standard reconstruction pro-

cedure with 64 ML-EM iterations (upper row) and 128 ML-EM iter-

ations (lower row). The latter one leads to a higher image contrast

and to a sharper separation between GM and WM.
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Figure 6.16.: FDG time activity curve of the reconstructed time frames acquired

with the BrainPET (first 18 data points) and HR+ (last 4 data

points). The curves show the arterial input function (AIF, blue curve)

and the whole brain region (red). The higher level of the AIF curve

in the HR+ measurement is likely due to the higher partial volume

effect on the HR+ scanner.
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6.2.3. [11C]-Flumazenil-PET/MRI Studies

The radiotracer [11C]-Flumazenil is applied in PET to study benzodiazepine re-

ceptors. In epileptic patients the attention is payed on focal abnormalities. Local

reduction in flumazenil binding was found to be correlated with the side and size

of seizure onset [33, 83].

In order to make precise statements on focal abnormalities in [11C]-Flumazenil-

PET it is of importance to have images without artefacts and with high resolu-

tion. With the achieved improvements of this work, an excellent image quality is

provided (see Figure 6.17). Since structual abnormalities, such as hippocampal at-

rophy were reported [83], simultaneous MRI combined with the high resolution of

the BrainPET may be advantageous. However, this has to be proven and exploited

by further detailed human studies.

(a) Sagittal view of human 11C-Flumazenil-

PET scan. Vertical streak artefacts are

clearly visible, as indicated by the arrow.

(b) Sagittal view of human 11C-flumazenil-

PET scan. Vertical streak artefacts have been

significantly reduced.

Figure 6.17.: Flumazenil PET with and without streak artefacts. The two scans

show two different subjects to address also the enhancement of an

optimal setup and attenuation template of the applied RF head coil.
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Figure 6.18.: The [11C]-Flumazenil-PET images (first row) show the uptake of the
11C-labelled epilepsy tracer. The second row shows the anatomical

MP-RAGE image. The third row shows the fused PET and MR

image.
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6.2.4. [15O]-Water-PET Study

Several methods are suitable for quantitative measurements of regional cerebral

blood flow (rCBF) applying PET or MRI including CO11
2 PET [52]. However, the

most often used PET tracer is labelled water (H15
2 O) [35, 5]. With the very short

half life of only 120 s the relatively high activity can be administered to the subject

and still results in a low radiation dose. Due to the high permeability of the blood

brain barrier for water combined with the high perfusion of the human brain, a

high activity concentration is achieved in the volume of interest. This results in a

very high countrate for the PET scanner leading to a high deadtime and a high

random coincidence rate. Consequently, the correction of these effects in water

studies is demanding.

The acquisition time in the presented PET study is 180 s. In order to assess the

time response of the tracer, the acquired listmode data are subdivided into 28

frames, with minimal length of 3 s at the beginning and maximal length of 10 s

towards the end of the acquisition. In Section 5.3 it was shown that the quantitative

error (positive bias) can increase significantly, when applying a framing scheme

with high temporal resolution. This leads to short frames with high statistical

uncertainties. In order to analyse the error due to the high number of frames, the

sum of the 28 reconstructed images is compared to the reconstructed sum of counts.

It turns out that the mean value in a large cortical ROI in the sum of the 28 images

is 14.50 kBq/ml whereas in the same ROI of the reconstructed sum of counts is

13.43 kBq/ml (applying 32 iterations with 2 subsets). So, the reconstructed sum

of counts is in good agreement with the sum of the reconstructed single images.

However, due to the remarkable random fraction, the convergence of the OP-OSEM

algorithm is rather slow, and thus a higher number of iteration shows a contrast

enhancement at costs of higher noise in the image. In order to exploit the image

resolution of the scanner, the parameters 64 iterations with 2 subsets were applied.

The comparision is given in Figure 6.19(a). The example of the TAC showing the

time response of the whole brain region is given in Figure 6.19(b).
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(a) 15O-Water PET Study (180 s acquisition time). Upper row: standard procedure with 64

ML-EM iterations, lower row: procedure with 128 ML-EM iterations. Besides the reduced

background outside the human head, also a significant contrast enhancement between GM

and WM can be observed.

(b) Time activity curve of the 180 s scan, subdivided into 28 frames of different length.

Figure 6.19.: Reconstructed images (a) and TAC of a whole-brain (WB) region in

a dynamic 15O-Water PET Study (b).
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6.2.5. Summary

A higher number than the current standard of 64 ML-EM iterations has to be

selected to assure convergence of the reconstruction. This holds especially in stud-

ies with high random and scatter fraction. This is less important for FET-PET,

since images converge early and high iteration numbers will increase the noise. In

water-PET studies, the high number of ML-EM iterations is crucial to assure the

contrast and exploit the high image resolution of the BrainPET. This has been

derived from in the phantom studies and transfers to the human PET measure-

ments. The versatile PET tracers acquired simultaneously to MR sequences show

an excellent image quality together with an accurate quantification.
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Hybrid imaging of MRI and PET has been realised for the first time for human ap-

plications with the MR-BrainPET scanners [30, 88]. A variety of MR contrasts and

parameters can be acquired simultaneously to high resolution PET images [16, 37].

Two hybrid MR-BrainPET scanners have been installed in the Forschungszentrum

Jülich, one combining the BrainPET with a Siemens 3T Tim Trio MR scanner and

one with a newly developed 9.4T MR scanner [91].

The APD based block detector technology applied by the BrainPET was expected

to be critical regarding stability and temperature dependency [81], especially due

to the air cooling of the detectors with the low thermal capacity of air. It has been

confirmed in long term studies with 68Ge-cylinder phantoms that the detector and

the crystal efficiencies are adequately stable over time. The adaptive air cooling

and a monthly normalisation measurement together with weekly calibration scans

were found to guarantee a stable configuration for PET imaging with the MR-

BrainPET scanners.

Characteristics such as sensitivity, countrate performance and image resolution are

inherent to a PET scanner and have been assessed first. Statistical uncertainties,

intrinsic to a counting experiment such as PET, can be reduced by increasing the

sensitivity. For the BrainPET the line source sensitivity was found to be 0.6 % in

the transaxial centre and 0.9 % for a transaxial offset of 10 cm. For point sources,

the peak sensitivity was detected at the centre of the FOV with 6.7 % (5.3 % at

10 cm radial offset) which is beneficial compared e.g. to the sensitivity of the

Siemens HRRT (4.7 % for a point source [50]). However, for highly specific tracers

with low overall uptake or for very short frames the number of acquired counts

can still be small. This leads to increased noise in the reconstructed radioactivity

distribution, and the less reliable basis has to be considered for the mandatory

data corrections. The high intrinsic resolution of the BrainPET scanner, and the

choice of appropriate image reconstruction software such as an LOR-based recon-

struction software allow for a more accurate quantification, even of small structures

[86]. The reconstructed image resolution of the BrainPET was found to be 2.79 mm

radially (2.66 mm tangentially and 3.36 mm axially) at the centre of the FOV, re-
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constructed with an implementation of the FBP algorithm [99] according to the

NEMA standard [4]. Limited resolution leads to a degradation of activity concen-

tration in small structures, compromising for example the estimation of activity

in small vessels [113]. This partial volume effect is inherent to PET scanners and

corrections are available [28]. Physically, the resolution is not only limited by the

selected crystal size and the material applied in detector design, but also the effect

of the positron range and acollinearity of the two emitted gamma photons after

annihilation. The former effect can induce uncertainties in particular for emissions

in or near locations with very small cross section for positron interaction, such as

the lung. Here, the application of a strong magnetic field as present in the 9.4T

MR-BrainPET can reduce the positron range perpendicular to the static magnetic

field vector and improve image resolution for isotopes with high positron energy

[36].

The exact quantification of PET images with hybrid MR-PET scanners is a com-

plex task with versatile sources of errors [19]. Uncertainties in the determination of

activity concentrations can be caused by either physical effects, such as Compton

scattering and photon attenuation, or imperfections in the measurement process

and data processing, such as detector deadtime and pulse pile-up. The inhomo-

geneity of crystal efficiencies is corrected by the normalisation. The application of

a DN or CBN procedure assures the compensation of varying crystal efficiencies

among the detector elements [7]. The CBN provides a noise reduced correction

compared to a DN. Since there is no difference in image reconstruction time be-

tween both approaches, the CBN is applied here. It is widely accepted that VR on

randoms improves quantification and SNR, which is especially important in frames

with low count sum. The evaluation of the implemented VRR algorithm [17] re-

veals excellent performance at all levels of count sums, reducing the positive bias

at low statistics frames. Furthermore, deadtime properties of the measurement

and also linearity regarding the count sum within the frames are preserved by the

VRR algorithm.

PET is regarded as a quantitative modality, not least due to the accurate for-

mulation of the attenuation correction. The separation of photon emission and

transmission properties for image reconstruction allows for a post processing cor-

rection of the beam attenuation. However, the over- or underestimation caused by

imperfect attenuation information can result in severe image artefacts, which are

not only due to an erroneous assignment of attenuation values to tissue and ma-

terials, but also due to mispositioning of the attenuation map or motion artefacts

during the measurement of subject and RF coil. Deriving attenuation properties
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from MR images is an issue of ongoing research and development. For attenuation

of the human head, several approaches exist [20, 39, 40, 48]. A template based AC

is applied in Jülich, since it is robust and requires minimal user interaction [82]. In

MR-PET applications the photon attenuation and Compton scattering caused by

the RF coils of the MRI scanner have also to be taken into account. Regarding the

birdcage coil not only the sensitivity reduction is an issue, but also the degradation

in image quality due its small, but transaxially symmetric structures. The applied

RF coil design and material is optimised regarding photon attenuation and scat-

tering. An accurately performed correction is crucial in order to avoid longitudinal

streak artefacts in the image. This has been improved significantly by adapting

the attenuation map of the coil (see Section 5.2).

The Compton scatter correction is a prerequisite for 3D acquisition with scatter

fractions of up to 30 – 50 % in one LOR [102]. Since the scatter simulation requires

an attenuation map of the subject, the outcome of the simulation is also sensitive

to the accuracy of the attenuation data. Furthermore, scatter simulation requires

an emission image as input for the computation. However, a first estimate suf-

fers from activity overestimation, since it still includes the scattered events. In a

second iteration, the image suffers from underestimation, but with reduced bias.

Consequently, the scatter correction shows a higher accuracy, if applied in more

than two iterations, as also shown in Section 5.3 and [42]. Mostly due to the

longer reconstruction times of this approach, it is not yet a clinical standard and

also in our standard reconstruction procedure it is only available optionally. The

statistical noise in the acquired sinogram data as well as in the emission image can

lead to an erroneous estimate of the scatter fraction and thus to larger errors in

the final quantitative image.

The dynamic behaviour of efficiencies caused by the deadtime of the detector blocks

and the subsequent electronics together with the pulse pileup at high countrates is

accounted by a combined deadtime and pileup correction. It is capable of improv-

ing the image homogeneity compared to the global deadtime correction approach.

The dynamic behaviour of single crystals has also been investigated and a correc-

tion procedure has been implemented and assessed. Despite the first promising

results the establishment of the method requires further investigation regarding

image quality and stability to be applied in the standard reconstruction. Also the

consideration of the applied radiopharmaceutical, its physical half life and also the

biological course and the injected dose play an important role in this regard.

Besides the well established corrections for PET, the new aspect of mutual in-

terference in simultaneous MR-PET imaging has been taken into account. The
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effect of MRI on the PET countrate has been quantified to be less than 2 % for

the 3T MR-BrainPET and can be neglegted in most clinical studies. However, it

can be corrected with the implemented procedure [104]. All the correction proce-

dures are combined and implemented in a user friendly framework, which allows

the reconstruction of acquired data to calibrated images in the ECAT7 format.

Versatile phantom studies have been performed, applying the radioisotopes 11C,
15O, 18F, 45Ti, 68Ge/68Ga, 68Ga and 120I, in order to evaluate and optimise the cor-

rection methods and to guarantee the overall quantification of the reconstructed

images. Mainly two experiments can be highlighted which are capable to reflect the

quantitative accuracy. Firstly, a decay experiment applying a homogeneously filled

cylinder with 18F-diluted water was conducted. The acquired and reconstructed

images of 10 frames, traversing a high dynamic range of activity concentrations

covering all clinical situations in terms of count rate were evaluated. The quantifi-

cation error here has been found to vary between -2.2 % for high countrate frames

and 4.4 % in very low countrate frames (see Section 6.1.1). The issue of bias in

low statistic frames has already been reported for the Siemens HRRT scanner [77].

Secondly, a two chamber phantom study has been performed, where the ratio of

activities (here: 4.15:1) is reliably recovered in the reconstructed image. The study

showed that a high number of iterations is necessary in order to approach conver-

gence of the OP-OSEM algorithm. As already seen for cylinder measurements, the

three iterations of scatter correction are also advantageous in regards of contrast

recovery in the study with the two chamber phantom (see Section 6.1.2).

Finally, the in vivo quantification of PET images applying the various methods de-

veloped and improved in this thesis was assessed. Quantitative imaging of different

PET tracers, namely 18F-FDG and 18F-FET, have been cross validated with the

commercial Siemens ECAT HR+ scanner. Furthermore, 11C-Flumazenil and 15O-

water studies were conducted, each with specific physiological and physical course

and fate, leading to various challenges in quantification and image quality. The

images have been evaluated regarding artefacts and the performance of the critical

corrections, e.g. random and deadtime for the 15O-water scans. The phantom

study results are confirmed by the outcome of the in vivo studies, where the quan-

titative evaluation of the BrainPET data is in good agreement with the Siemens

ECAT HR+ data. Compared to clinical PET/CT scanners, the BrainPET com-

ponent shows superior image resolution. The image quality of the BrainPET is

comparable to images of the high resolution HRRT scanner, but the MR-BrainPET

scanners offer now the additional information of simultaneously performed MRI

protocols.
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8.1. Conclusion

In this work the quantification of PET imaging with the hybrid MR-BrainPET

scanners has been realised and evaluated. The mandatory correction procedures

have been developed and implemented. Especially, the properties and accuracy

of manufacturer provided component based normalisation and Compton scatter

correction procedure have been analysed. Besides, the new aspect of interfer-

ence of MRI on PET imaging during simultaneous MR-PET studies has been

intensively investigated. Even though for most studies these effects are negligi-

ble, for neuroreceptor PET studies they become important. Thus, a correction

for the found effects has been implemented and can be applied optionally in the

reconstruction framework. Furthermore, the dynamic sensitivity effects at vary-

ing countrates have been compensated, including deadtime and pileup correction.

Also the photon attenuation caused by the RF coil of the MR component has been

taken into account. The template based attenuation correction, together with the

other procedures, has been integrated in a reconstruction framework in order to

obtain calibrated images from acquired listmode data with minimal user interac-

tion. Calibration of the system is achieved evaluating a sequence of calibration

phantom scans which are compared to gamma counter probes and to PET mea-

surements acquired with a Siemens ECAT HR+ scanner. The main performance

parameters of the scanner hardware and the developed software components were

determined applying the NEMA standard. Additional measurements to evaluate

countrate properties, image resolution, sensitivity and the overall quantification

were performed. The reconstruction framework is applicable in phantom studies

as well as in human MR-PET studies in our institute. Versatile phantom studies

with different geometries, radioisotopes and countrates have been performed in

order to further optimise correction procedures and finally assess the quantitative

accuracy. With daily applied quality control measurements, the long term stability

was demonstrated.

Finally, human studies applying quantitative PET imaging in simultaneous MR-
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PET studies were performed and evaluated. Versatile PET radiotracers, such as
18F-FDG, 18F-FET, 11C-Flumazenil and 15O-Water were applied, each with specific

physiological and physical properties, leading to various challenges in quantification

and image quality. It can be concluded that quantification of the high resolution

PET images acquired with the MR-BrainPET scanner has been realised.

With the state of the art accuracy in quantification and the high resolution of

the PET scanner combined with simultaneous MRI, the 3T MR-BrainPET and in

the near future also the 9.4T MR-BrainPET scanners are outstanding devices for

neuroimaging.

8.2. Outlook

Even though quantification of PET images has been achieved in a robust workflow,

several improvements are viable. One is the improvement of the Compton scatter

correction procedure to allow for a more robust scatter estimation even in frames

with low statistics. Related to the scatter correction, the vital topic of MR based

attenuation correction, which is even more demanding at whole body MR-PET,

has to be further investigated. Improving MR sequences for bone detection would

allow for an even more robust separation between bone, air and tissue. The RF coil

design may be further optimised regarding the attenuation properties and geometry

and it should be included in the scatter correction. However, the manufacturer

provided scatter correction does not allow such a modification.

The design of future PET components in MR-PET scanners should take care of

reducing the gap structure between adjacent detector blocks in order to avoid the

challenging scatter behaviour. Besides the geometry, the shielding and filtering of

the analogue PET signals should be improved in order to further reduce the resid-

ual signal induction of switching gradients during simultaneous MR-PET studies.

Also, an alternative motion detection procedure, either with a camera system or

MR navigator sequences may be applied. Finally, the co-registration of acquired

volumes in MRI and PET, especially accounting for possible image distortions in

different MRI sequences should be further investigated and improved. The pre-

clinical and clinical task of developing dedicated MR-PET protocols to exploit the

full potential of the new powerful multi-modal tool will contribute to the further

acceptance of MR-PET in neuroscience and clinical applications in the near future.
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A. Decay Correction for Frames

With the assumption of an ideal scanner without saturation effects, the number of

measured counts C is directly proportional to the number of radioactive decays. A

correction for radioactive decay during the study has to condider two components.

One is the radioactive decay from the start of measurement t0 to the start of the

frame ta and furthermore, the decay during data acquisition from start of the

frame ta to the end of the frame te. The radio activity concentrations given at the

respective moments are denoted a(t) and the factor s describes the sensitivity of

the scanner. The ideal number of acquired counts within a time frame neglecting

radioactive decay is given by

C1 = s a(t0) (te − ta) (A.1)

The actually measured number of counts in that frame is

C2 = s a(t0)

∫ te

ta

e−λτdτ (A.2)

The decay correction value α is described by the ratio of C1 and C2:

α =
C1

C2

=
te − ta∫ te
ta
e−λτdτ

(A.3)

=
te − ta

− 1
λ
(e−λte − e−λta)

(A.4)

=
λ eλta (te − ta)

eλta (e−λta − e−λte)
=
λ eλta (te − ta)
1− e−λ(te−ta)

(A.5)

with the framelength te − ta = ∆t:

α =
λ eλta ∆t

1− e−λ ∆t
(A.6)
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Acronyms

ACF Attenuation Correction Factor

APD Avalanche Photodiode

ASIC Application Specific Integrated Circuit

BF Branching Factor

BGO Bismuth Germinate

CBN Component Based Normalisation

CFD Constant Fraction Discriminator

CLU Crystal Lookup Table

CNR Contrast-to-Noise Ratio

CoV Coefficient of Variance

CSI Chemical Shift Imaging

CT X-ray Computed Tomography

DCF Decay Correction Factor

DCMAP Delayeds Coincidence MAP

DN Direct Normalisation

DTC Deadtime Correction

DTI Diffusion Tensor Imaging

DW Delayed Window

ELU Energy Lookup Table
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EPI Echo Planar Imaging

FBP Filtered Backprojection

FDG Flurdesoxyglucose

FET Fluroethyltyrosine

FID Free Induction Decay

FLAIR Fluid Attenuated Inversion Recovery

fMRI functional MRI

FOV Field of View

FWHM Full Width Half Maximum

GM Grey Matter

HRRT High Resolution Research Tomograph

IDIF Image Derived Input Function

LLD Lower Level Discriminator

LOR Line of Response

LSO Lutetium Oxy-Orthosilicate

LYSO Lutetium Yttrium Oxy-Orthosilicate

ML-EM Maximum Likelihood Expectation Maximisation

MP-RAGE Magnetisation Preparation - Rapid Gradient Echo

MR-AC MR-based Attenuation Correction

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

NEC Noise Equivalent Countrate

NMR Nuclear Magnetic Resonance
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OP Ordinary Poisson

OSEM Ordered Subsets Expectation Maximisation

PCMAP Prompts Coincidence MAP

PET Positron Emission Tomography

PDE Photon Detection Efficiency

PMT Photomultiplier

QC Quality Control

QE Quantum Efficiency

RF Radio Frequency

ROI Region of Interest

SAR Speciffic Absorption Rate

SiPM Silicon Photomultiplier

SNR Signal-to-Noise Ratio

SPECT Single Photon Emission Computed Tomography

SSS Single Scatter Simulation

TAC Time Activity Curve

TCMAP Trues Coincidence MAP

TLU Time Lookup Table

TOF Time of Flight

UHF Ultra High Field

ULD Upper Level Discriminator

UTE Ultra short Echo Time

VRR Variance Reduced Randoms
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WB Whole Brain

WM White Matter

XYE X- and Y-coordinate and Energy
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