546 research outputs found

    The Legal Framework for eResearch Project

    Get PDF
    The Legal Framework for e-Research involves mapping out a sophisticated legal framework for e-Research and collaborative innovation. As we transition into the National Collaborative-Research Infrastructure Strategy (NCRIS) era it is vitally important that social and legal aspects of the e-Research framework are developed in step with the rapid advances in technology. Only little work has been done in this area worldwide. This project will link with key international actors to provide an internationally significant project. While the Open Access to Knowledge (OAK) Law project aims to examine the role of open access to all in an Internet world, this project focuses on open innovation within secure knowledge communities – both are vital aspects of the e-Research framework. The critical issue is working out legal models for e-Research that reflect the capacity of the technologies involved and can be implemented quickly, effectively and (in many instances) in an automated way

    Creating a Legal Framework for Copyright Management of Open Access within the Australian Academic and Research Sector

    Get PDF
    There is an increasing recognition, in Australia and internationally, that access to knowledge is a key driver of social, cultural and economic development. The argument for greater access to, and reuse of, research outputs is reinforced by the fact that much research in Australia is funded by public money and, consequently, that there is a public benefit to be served by allowing citizens to access the outputs they have funded.2 This recognition poses both legal and policy challenges, in terms of existing legal frameworks such as copyright law and traditional business models. With the rise of networked digital technologies our knowledge landscape and innovation system is becoming more and more reliant on best practice copyright management strategies and there is a need to accommodate both the demands for open sharing of knowledge and traditional commercialisation models. As a result, new business models that support and promote open innovation are rapidly emerging. This chapter analyses the copyright law framework needed to ensure open access to outputs of the Australian academic and research sector such as journal articles and theses. It overviews the new knowledge landscape, the principles of copyright law, the concept of open access to knowledge, the recently developed open content models of copyright licensing and the challenges faced in providing greater access to knowledge and research outputs

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore