631 research outputs found
Study of Radiation Damage in Lead Tungstate Crystals Using Intense High Energy Beams
We report on the effects of radiation on the light output of lead tungstate
crystals. The crystals were irradiated by pure, intense high energy electron
and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The
crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai
(China). These studies were carried out at the 70-GeV proton accelerator in
Protvino
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
Biology, Fishery, Conservation and Management of Indian Ocean Tuna Fisheries
The focus of the study is to explore the recent trend
of the world tuna fishery with special reference to the Indian Ocean
tuna fisheries and its conservation and sustainable management.
In the Indian Ocean, tuna catches have increased rapidly from
about 179959 t in 1980 to about 832246 t in 1995. They have
continued to increase up to 2005; the catch that year was 1201465
t, forming about 26% of the world catch. Since 2006 onwards
there has been a decline in the volume of catches and in 2008
the catch was only 913625 t. The Principal species caught in the
Indian Ocean are skipjack and yellowfin. Western Indian Ocean
contributed 78.2% and eastern Indian Ocean 21.8% of the total
tuna production from the Indian Ocean. The Indian Ocean stock
is currently overfished and IOTC has made some recommendations
for management regulations aimed at sustaining the tuna stock.
Fishing operations can cause ecological impacts of different types:
by catches, damage of the habitat, mortalities caused by lost or
discarded gear, pollution, generation of marine debris, etc. Periodic
reassessment of the tuna potential is also required with adequate
inputs from exploratory surveys as well as commercial landings
and this may prevent any unsustainable trends in the development
of the tuna fishing industry in the Indian Ocean
The On-orbit Calibrations for the Fermi Large Area Telescope
The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope
began its on--orbit operations on June 23, 2008. Calibrations, defined in a
generic sense, correspond to synchronization of trigger signals, optimization
of delays for latching data, determination of detector thresholds, gains and
responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA),
measurements of live time, of absolute time, and internal and spacecraft
boresight alignments. Here we describe on orbit calibration results obtained
using known astrophysical sources, galactic cosmic rays, and charge injection
into the front-end electronics of each detector. Instrument response functions
will be described in a separate publication. This paper demonstrates the
stability of calibrations and describes minor changes observed since launch.
These results have been used to calibrate the LAT datasets to be publicly
released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic
Neutrino oscillation studies with IceCube-DeepCore
AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed
- …