94 research outputs found

    Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    Get PDF
    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO 3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs

    HbA1C Variability Is Strongly Associated With the Severity of Peripheral Neuropathy in Patients With Type 2 Diabetes

    Get PDF
    Variability in HbA1c is associated with a higher risk of cardiovascular disease and microvascular complications in patients with type 2 diabetes. The present study evaluated the severity of somatic nerve dysfunction at different stages of chronic glycemic impairment, and its correlation with different cardio-metabolic parameters. The study was conducted on 223 patients with type 2 diabetes. We calculated the intrapersonal mean, standard deviation (SD), and coefficient of variation of HbA1c for each patient using all measurements obtained for 3 years prior to the study. Patients were divided into quartiles according to the SD of HbA1c, and we constructed composite scores of nerve conduction as the severity of peripheral neuropathy. Linear regression analysis was performed to evaluate the influence of independent variables on mean composite scores. Those with higher SD-HbA1c had a higher body mass index, mean and index HbA1c, triglyceride and uric acid level, urinary albumin excretion and albumin-creatinine ratio, proportion of insulin therapy, and prevalence of hypertension as the underlying diseases, but lower estimate glomerular filtration rate (eGFR). In addition, those with higher SD-HbA1c showed lower amplitudes and reduced motor nerve conduction velocity in tested nerves, and lower sensory nerve conduction velocity in the sural nerve. Furthermore, those with higher SD-HbA1c had higher composite scores of low extremities. Multiple linear regression analysis revealed that diabetes duration, SD-HbA1c, and eGFR were independently associated with mean composite scores. Based on our results, HbA1c variability plus chronic glycemic impairment is strongly associated with the severity of peripheral neuropathy in patients with type 2 diabetes. Aggressively control blood glucose to an acceptable range and avoid blood glucose fluctuations by individualized treatment to prevent further nerve damage

    Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method

    Get PDF
    The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR) arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis) growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis) growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids

    Gain of gene regulatory network interconnectivity at the origin of vertebrates

    Get PDF
    Signaling pathways control a large number of gene regulatory networks (GRNs) during animal development, acting as major tools for body plan formation [A. Pires-daSilva, R. J. Sommer, Nat. Rev. Genet. 4, 39-49 (2003)], although only a few of these pathways operate during this period [J. J. Sanz-Ezquerro, A. E. Munsterberg, € S. Stricker, Front. Cell Dev. Biol. 5, 76 (2017)]. Moreover, most of them have been largely conserved during metazoan evolution [L. S. Babonis, M. Q. Martindale, Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150477 (2017)]. How evolution has generated a vast diversity of animal morphologies with such a limited number of tools is still largely unknown. Here, we show that gain of interconnectivity between signaling pathways and the GRNs they control may have critically contributed to the origin of vertebrates. We perturbed the retinoic acid, Wnt, FGF, and Nodal signaling pathways during gastrulation in the invertebrate chordate amphioxus and zebrafish and compared the effects on gene expression and cis-regulatory elements (CREs). We found that multiple developmental genes gain response to these pathways through vertebrate-specific CREs. Moreover, in contrast to amphioxus, many of these CREs responded to multiple pathways in zebrafish, which reflects their high interconnectivity. Furthermore, we found that vertebrate-specific cell types are more enriched in highly interconnected genes than in tissues with more ancient origin. Thus, the increase of CREs in vertebrates integrating inputs from different signaling pathways probably contributed to gene expression complexity and to the formation of new cell types and morphological novelties in this lineage.This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant agreement no. 740041) and the Spanish Ministerio de Economía y Competitividad (Grants BFU2016-74961-P and PID2019-103921GB-I00 to J.L.G.-S. and J.J.T.). This work was also supported by the institutional grant Unidad de Excelencia María de Maeztu (Grant MDM-2016-0687 to the Department of Gene regulation and morphogenesis of Centro Andaluz de Biología del Desarrollo). M.F. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement [#800396]. M.S., H.E., and S.B. were supported by the CNRS, and H.E. and S.B. additionally by Agence Nationale de la Recherche (ANR) CHORELAND (Grant ANR-16-CE12-0008-01) and the Institut Universitaire de France. Y.-H.S. and J.-K.Y. are supported by intramural funds from Academia Sinica and grants from Ministry of Science and Technology, Taiwan (Grants 110-2326-B-001-006 to Y.-H.S. and 110-2621-B-001-001-MY3 to J.-K.Y.)

    HbA1C Variability Is Strongly Associated With the Severity of Cardiovascular Autonomic Neuropathy in Patients With Type 2 Diabetes After Longer Diabetes Duration

    Get PDF
    BackgroundVariability in the glycated hemoglobin (HbA1c) level is associated with a higher risk of microvascular complications in patients with type 2 diabetes. We tested the hypothesis that HbA1c variability is not only strongly associated with the presence but also the degree of severity of cardiovascular autonomic neuropathy (CAN) in patients with long diabetes durations (more than 10 years).MethodsFor each patient, the intrapersonal mean, standard deviation (SD), and coefficient of variation (CV) for HbA1c were calculated using all measurements obtained 3 years before the study. We constructed the composite autonomic scoring scale (CASS) as a measure of the severity of cardiovascular autonomic functions. Stepwise logistic regression and linear regression analyses were performed to evaluate the presence of CAN and the influence of independent variables on the mean CASS, respectively.ResultsThose with CAN had a higher mean age, a higher low-density lipoprotein cholesterol (LDL-C), HbA1c-SD, HbA1c-CV, mean HbA1c, and index HbA1c, higher prevalence of retinopathy as the underlying disease, and lower high-density lipoprotein (HDL) levels. Stepwise logistic regression showed that HbA1c-SD and retinopathy were risk factors that were independently associated with the presence of CAN. Mean HbA1c, HbA1c-CV, HbA1c-SD, and index HbA1c were positively correlated with mean CASS, and a multiple linear regression analysis revealed that HbA1c-SD was independently associated with the mean CASS.ConclusionHbA1c variability is strongly associated with not only the presence but also the degree of severity of CAN. A longitudinal study is required to confirm whether controlling blood glucose level is effective in reducing CAN progression

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore