18 research outputs found

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    Moving from contractor to owner operator: Impact on safety culture; a case study

    Get PDF
    Purpose – The purpose of this paper is to investigate whether a change in staffing contractual arrangements, specific training in hazard identification, mentoring of supervisors and the introduction of a robust safety system could improve an organisation\u27s safety culture. How safety conditions change under contracted out labour compared to direct labour and the influence that contracting out has on organisational safety culture is explored. Design/methodology/approach – The study used a case study methodology to detail how the change occurred over a six month period in 2011. As part of the analysis a model of the change process and push-pull factors is offered. Findings – As a result of the change, all areas saw some improvement. Work-related injury statistics dropped significantly, supervisors were clear of their roles, actively monitoring their crews to ensure they worked in a safer manner than before, and staff were actively addressing work-place hazards. With the safety system in place the organisation should be deemed compliant and diligent by the state auditing authorities. This study has also shown that using contractor workers together with in-house workers that are managed under different safety regimes is problematic. The problems don’t occur due to the contractor\u27s safety systems being less robust than the parent company\u27s or that contract workers are themselves less safe; it is the added complexity of managing multiple safety regimes and the lack of trust of the robustness of each system that create conflict. Research limitations/implications – The paper reports on the change process of one mining organisation in Western Australia as a case study from a managerial sample and is thereby limited. Practical implications – This study demonstrates the difficulties in changing safety culture in an underground mining organisation. The paper argues the need for specialised training in identifying hazards by the staff, the mentoring of supervisory staff and the adoption of a robust safety system to support improved safety culture. Originality/value – There is little research conducted in the resources sector researching changes in human resource supply and OHS management, in particular moving from contracted labour to hiring in-house. This case provides an insight into how a change in staffing hiring arrangements, together with specific safety initiatives, has a positive impact on safety performance

    Slaughter weight rather than sex affects carcass cuts and tissue composition of Bisaro pigs

    Get PDF
    Carcass cuts and tissue composition were assessed in Bisaro pigs (n=64) from two sexes (31 gilts and 33 entire males) reared until three target slaughter body-weights (BW) means: 17 kg, 32 kg, and 79 kg. Dressing percentage and backfat thickness increased whereas carcass shrinkage decreased with increasing BW. Slaughter weight affected most of the carcass cut proportions, except shoulder and thoracic regions. Bone proportion decreased linearly with increasing slaughter BW, while intermuscular and subcutaneous adipose tissue depots increased concomitantly. Slaughter weight increased the subcutaneous adipose tissue proportion but this impaired intramuscular and intermuscular adipose tissues in the loin primal. The sex of the pigs minimally affected the carcass composition, as only the belly weight and the subcutaneous adipose tissue proportions were greater in gilts than in entire males. Light pigs regardless of sex are recommended to balance the trade-offs between carcass cuts and their non-edible compositional outcomes.Work included in the Portuguese PRODER research Project BISOPORC – Pork extensive production of Bísara breed, in two alternative systems: fattening on concentrate vs chesnut, Project PRODER SI I&DT Medida 4.1 “Cooperação para a Inovação”. The authors are grateful to Laboratory of Carcass and Meat Quality of Agriculture School of Polytechnic Institute of Bragança ‘Cantinho do Alfredo’. The authors are members of the MARCARNE network, funded by CYTED (ref. 116RT0503).info:eu-repo/semantics/publishedVersio

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records

    No full text
    While Asian monsoon (AM) changes have been clearly captured in Chinese speleothem oxygen isotope (δ18O) records, the lack of glacial-interglacial variability in the records remains puzzling. Here, we report speleothem δ18O records from three locations along the trajectory of the Indian summer monsoon (ISM), a major branch of the AM, and characterize AM rainfall over the past 180,000 years. We have found that the records close to the monsoon moisture source show large glacial-interglacial variability, which then decreases landward. These changes likely reflect a stronger oxygen isotope fractionation associated with progressive rainout of AM moisture during glacial periods, possibly due to a larger temperature gradient and suppressed plant transpiration. We term this effect, which counteracts the forcing of glacial boundary conditions, the moisture transport pathway effect.Ministry of Education (MOE)National Research Foundation (NRF)Published versionThis work was funded by the National Research Foundation of Singapore under its NRF Fellowship scheme (award no. NRF-NRFF2011-08 to X.W.), the EOS, the National Research Foundation and the Singapore Ministry of Education under the Research Centers of Excellence initiative, an NSFC grant (no. 41888101 to H.C.), an NRF-NSFC joint grant (no. NRF2017NRF-NSFC001-047 to X.W.), and a DPST research grant (award no. 042/2558 to S.C.)

    Expert assessment of future vulnerability of the global peatland carbon sink

    Get PDF
    Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.Peer reviewe
    corecore