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The carbon balance of peatlands is predicted to shift from a sink to a source this century. 96 

However, peatland ecosystems are still omitted from the main Earth System Models used 97 

for future climate change projections and they are not considered in Integrated 98 

Assessment Models used in impact and mitigation studies. Using evidence synthesized 99 

from the literature and an expert elicitation, we define and quantify the leading drivers of 100 

change that have impacted peatland carbon stocks during the Holocene and predict their 101 

effect during this century and the far future. We also identify uncertainties and knowledge 102 

gaps among the scientific community and provide insight towards better integration of 103 

peatlands into modeling frameworks. Given the importance of peatlands’ contribution to 104 

the global carbon cycle, this study shows that peatland science is a critical research area 105 

and that we still have a long way to go to fully understand the peatland-carbon-climate 106 

nexus.  107 

 108 

Peatlands are often regarded as stable systems, with limited influence on annual carbon (C) 109 

cycling dynamics at the global scale. To some extent, this is true: their net C exchange with the 110 

atmosphere (a sink of ~0.14 Gt yr-1)1 is equivalent to ~ 1% of human fossil fuel emissions, or 3-111 

10% of the current net sink of natural terrestrial ecosystems2. However, and despite only 112 

occupying 3% of the global land area3, peatlands contain about 25% (600 GtC) of the global soil 113 

C stock4, equivalent to twice the amount in the world’s forests5. This large and dense C store is 114 

the result of the slow process of belowground peat accumulation under saturated conditions that 115 

has been taking place over millennia, particularly following the Last Glacial Maximum (LGM), as 116 

peatlands spread across northern ice-free landscapes4. Given their ability to sequester C over 117 

long periods of time, peatlands acted as a cooling mechanism for Earth’s climate throughout most 118 

of the Holocene6-7. Should these old peat C stores rejoin today’s active C cycle, they would create 119 

a positive feedback on warming. However, the fate of the global peat-C store remains disputed, 120 

mainly because of uncertainties that pertain to permafrost dynamics in the high latitudes as well 121 

as land-use and land-cover changes (LULCC) in the boreal, temperate, and tropical regions8.  122 

 123 
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Peatland C stocks and fluxes have yet to be incorporated into Earth System Models (ESMs), 124 

though they are beginning to be implemented in global terrestrial models9-10. As these models are 125 

moving towards the integration of permafrost dynamics, LULCC, and other disturbances such as 126 

fire, the absence of peatland C dynamics could lead to many problems in the next generation of 127 

models (Figure 1a). For example, the omission of organic-rich soils was a key contributor to the 128 

inaccurate estimates of organic soil mass, heterotrophic respiration, and methane (CH4) 129 

emissions in recent Climate Model Intercomparison Project (CMIP5) simulations11. Likewise, the 130 

successful integration of permafrost dynamics into land surface models necessitates the inclusion 131 

of peatlands, as the latter occupy approximately 10% of the northern permafrost area and 132 

account for at least 20% of the permafrost C stocks12, of which a sizable fraction is susceptible to 133 

wildfire13. LULCC scenarios must also account for temperate and tropical peatland degradation to 134 

derive better estimates of C fluxes14 and associated impacts on radiative forcing15. The inclusion 135 

of peatlands in ESMs should help address the complexity of the interacting, cross-scale drivers of 136 

change that control peat-C dynamics and quantify their contribution to a positive C cycle feedback 137 

now and in the future. 138 

 139 

Peatland conversion and restoration are also not considered in Integrated Assessment Models 140 

(IAMs), although there is growing anthropogenic pressure on peatland ecosystems worldwide16-17. 141 

Atmospheric carbon dioxide (CO2) emissions associated with degraded peatlands account for 5-142 

10% (0.5-1 GtC) of the global annual anthropogenic CO2 emissions18-19, despite their small 143 

geographic footprint (Figure 1b). While the preservation of pristine peat deposits would be ideal, 144 

the restoration of degraded sites, particularly through rewetting, could prevent additional CO2 145 

release to the atmosphere and reduce the risk of peat fires20-21. Even if restoration leads to C 146 

neutrality (i.e., sites stop losing C but do not start gaining it), their global greenhouse gas (GHG) 147 

saving potential would be similar to the most optimistic sequestration potential from biochar and 148 

cover cropping from all agricultural soils combined19,22. As IAMs move towards the integration of 149 

nature-based climate solutions to limit global temperature rise, peatland restoration and 150 

conservation are poised to gain in importance in those models, as well as in the international 151 
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political arena23. In turn, the socio-economic scenarios developed in IAMs could help inform the 152 

role of management interventions on future peatland use and guide policy options to best inform 153 

the implementation of GHG emission control strategies for decision makers. Ultimately, these 154 

model outputs will help predict the effect of peatland management on the global C cycle.  155 

   156 

[ insert Figure 1 here; if possible, we would like this figure to be “2-column-wide” ] 157 

 158 

Here, we review the main agents of change of peatland C stocks and fluxes, including drivers that 159 

can induce rapid peatland C losses (peat fire, land-use change, and permafrost thaw) and 160 

gradual drivers that can lead to rapid, nonlinear responses in peatland ecosystems (temperature 161 

increases, water table drawdowns, sea-level rise, and nutrient addition) (Figure 2). We use an 162 

expert elicitation to assess the perceived importance of these agents of change on C stocks, 163 

asking one question: “What is the relative role of each agent of change for shifting the peatland C 164 

balance in the past, present, and future?” Estimates are based on responses from 44 peat 165 

experts (see SI for details). Four time periods are studied: post-LGM (21,000 yr BP – 1750 CE), 166 

Anthropocene (1750-2020 CE), rest of this century (2020-2100 CE), and far future (2100-2300 167 

CE). The confidence and expertise levels are tallied for each of the experts’ responses (Tables 168 

S6 to S9; Figure S2), along with the sources that guided their estimates (Appendix 4). Arithmetic 169 

means and 80% central ranges (10th to 90th percentiles) are presented in the text and in Figure 3; 170 

other measures of central tendencies can be found in Tables S4 and S5. While central values 171 

provide order-of-magnitude estimates that may be useful to the reader, the strength of this 172 

elicitation is in its ability to identify where experts agree and disagree, and to recognize ranges of 173 

responses across experts. Thus, the elicitation findings can inform how integrating peatlands into 174 

modeling frameworks such as ESMs and IAMs could advance peatland process understanding 175 

and further test hypotheses that emerge from different schools of thought.  176 

 177 

[ insert Figure 2 here; if possible, we would like this figure to be “3-column-wide”  ] 178 

 179 
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 180 

Drivers of Peatland Carbon Stocks since the Last Glacial Maximum 181 

During the post-LGM time period, experts consider temperature the most important long-term 182 

driver of peat accumulation in extra-tropical peatlands (arithmetic mean = 524 (10th – 90th 183 

percentiles = 60 to 890) GtC; Figure 3). A positive moisture balance is deemed a necessary 184 

condition for peatland development, maintenance, and C preservation (238 (10 to 570) GtC). 185 

Several respondents comment that it is difficult, if not impossible, to separate the respective role 186 

of these two agents of change (Appendix 3). This exemplifies the need to integrate peatlands in 187 

ESMs, as cross-scale interactions between agents of change on peatland C dynamics could be 188 

further evaluated. Permafrost is also thought to be of importance due to its capacity to inhibit peat 189 

decay in northern high-latitude peatlands (218 (-14 to +531) GtC). That said, experts note that 190 

permafrost also likely contributes to slower C accumulation rates (when compared to non-191 

permafrost sites); permafrost also possibly contributes to peat erosion in regions where wind-192 

drifted snow and ice crystals can abrade dry peat surfaces24. The large range of values for 193 

permafrost (Figure S1) stems from the fact that some respondents attribute the entire permafrost 194 

peatland C pool to the presence of permafrost itself, while others attribute the C pool mainly to 195 

temperature and moisture, with permafrost aggradation playing the secondary role of protecting C 196 

stocks. In the tropics, experts suggest that long-term peat C sequestration is mainly driven by 197 

moisture availability (268 (24 to 360) GtC), with wetter conditions slowing down peat 198 

decomposition. Temperature and sea-level are identified as secondary agents promoting peat 199 

formation and growth (43 (0 to 128) GtC and 7 GtC (-13 to +52), respectively). Estimates for the 200 

net role of sea-level on tropical C stocks is near zero because some of the rapid C accumulation 201 

rates following sea-level rise in certain regions are counterbalanced by C losses due to 202 

continental shelf flooding and associated peat erosion or burial in other regions25 (Figure 3). 203 

 204 

These results are largely corroborated by the literature review. On the basis of extensive paleo 205 

records, we know that peatlands have spread across vast landscapes following the LGM4. As 206 

long as sufficient moisture conditions are maintained, warmer and longer growing seasons can 207 
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contribute to increases in plant productivity and peat burial in many extra-tropical regions26-28, but 208 

to enhanced decomposition and carbon loss in the tropics29-30, where growing season length and 209 

temperature are not limiting factors for photosynthesis1,31. Indeed, water saturation is a key 210 

control on oxygen availability in peat and on plant community composition, and thus an important 211 

determinant for CO2 and CH4 emissions and on net ecosystem C balance in both intact and 212 

drained peatlands32-34. Soil moisture excess is a necessary condition for long-term peat 213 

development; surface wetness must remain sufficient to minimize aerobic respiration losses and 214 

provide conditions inhibiting the activity of phenol oxidase35. In the tropical and mid-latitude 215 

regions, water table depth is recognized as the main agent driving long-term peat accumulation36-216 
38. At the regional scale, the literature review tells us that sea-level rise may either lead to net C 217 

losses39 or net C gains40. For example, sea-level decline in the tropics41 and land uplift following 218 

deglaciation in the north42 contributed to peat expansion over the past 5000 years. Conversely, in 219 

the (sub-) tropics, sea-level rise can drive groundwater levels up regionally, which allows coastal 220 

peatlands to expand and accrete at greater rates43-44. This process, which took place during the 221 

previous interglacial25 and other past warm climates, is likely to be most pronounced in the large 222 

coastal peatlands of the (sub-)tropics. While tectonic subsidence can lead to vast accumulations 223 

of lignite over millions of years45-46, its conjunction with rapid sea-level rise, rapid subsidence, or 224 

peat surface collapse due to water abstraction or LUC can lead to peatland loss47-48. In general, 225 

sea-level rise has been suggested to be a threat for coastal peatlands49-50, as these systems 226 

have limited capacity to move inland because of topography or human development.  227 

 228 

[ insert Figure 3 here; if possible, we would like this figure to be “2-column-wide”  ] 229 

 230 

 231 

Drivers of Peatland Carbon Stocks during the Anthropocene 232 

During the Anthropocene, short-term peat C losses across the northern high latitudes are linked 233 

to LUC (-7 (-23 to 0) GtC) and fire (-3 (-8 to 0) GtC) by the experts (Figure 3). As for permafrost 234 

dynamics, small C gains (2 (0 to 10) GtC) are suggested, though many experts warn that large 235 
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and rapid losses of old C have only recently begun and are expected to increase in the future 236 

(Appendix 3). Peat drainage for agriculture, forestry, industrial-scale peat extraction, and grazing 237 

were identified as the main sources of anthropogenic pressure on these peatlands (Figure 3). 238 

While peat C lost to human activity must have been considerable during the pre-Industrial time 239 

and the start of the Industrial era across Europe, historical reports are too few to provide a 240 

reliable estimate18. In this case, LULCC simulations from IAMs could reduce this uncertainty, or 241 

provide several scenarios. The C loss to fire is attributed to an increase in both natural and 242 

anthropogenic burning. Similarly, the main suggested causes of peat C losses in the tropics are 243 

LUC (-8 (-14 to -2) GtC) and fire (-4 (-10 to 0) GtC). Despite these losses, the trend suggests that 244 

northern high-latitude peatlands have persisted as C sinks throughout the Anthropocene. Experts 245 

primarily attribute the net C gain across the northern high latitudes to faster accumulation rates 246 

induced by longer and warmer growing conditions from climate warming (16 (0 to 38) GtC). An 247 

increase in moisture from greater precipitation is suggested as an additional agent leading to C 248 

gain in the Arctic, though several experts mention C losses due to drought across the boreal and 249 

mid-latitude regions; an overall increase of 11 (-1 to +31) GtC from moisture is suggested by the 250 

survey respondents. Lastly, nitrogen (N) deposition and other atmospheric pollution are thought 251 

to have a negligible impact (<1 (-1 to +1) GtC) on the peatland C sink capacity worldwide.   252 

 253 

The importance of permafrost and fire seen in the expert elicitation are reflected in the main 254 

findings from the literature review. For instance, across the northern high-latitude regions, 255 

increasing air temperatures and winter precipitation have been linked to a >50% reduction in 256 

palsa or peat plateau area since the late 1950s51-53, although this is variable by region54. In 257 

general, thermokarst landforms such as ponds or collapse-scar wetlands with saturated soils form 258 

when ice-rich peat thaws and collapses. These mainly anaerobic environments are characterized 259 

by high CH4 emissions55-57; mass-balance accounting for C stocks indicates as much as 25-60% 260 

of “old” permafrost C is lost in the years to decades following thaw58-60. Over time, increased C 261 

sequestration and renewed peat accumulation occurs in drained thermokarst lake basins61-62 and 262 

collapse-scar wetlands, but it can take decades to centuries and sometimes millennia for 263 
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collapse-scar wetlands to transition from having a positive (warming) to a negative (cooling) net 264 

radiative forcing59,63. Moreover, the combustion of peat layers has led to direct losses of plant and 265 

peat C (Figure 3). Fire-derived emissions can be substantial, exceeding biological emissions from 266 

peat decomposition in some years64. The highest emissions are observed from drained tropical 267 

peatlands in extreme dry years such as the 1997 El Niño (810-2570 TgC yr-1)65 and the 2015 fire 268 

season (380 Tg C yr-1)66 in Indonesia. However, as a result of drainage, peat fires are even 269 

observed in wet years67. Although peat C losses from northern peat fires are smaller (e.g., 5 TgC 270 

yr-1 from Alaskan wetlands)68, there is a need to consider wildfires in permafrost thaw dynamics 271 

due to their effects on soil temperature regime69. Peatland surface drying, both as a result of 272 

droughts and human activity, has been shown to increase the frequency and extent of peat 273 

fires13,70, which could lead to deeper burns and hindered recovery71 as well as peat water 274 

repellency72. In terms of LUC, it is well accepted that widespread peatland conversion, drainage, 275 

and mining across the temperate and tropical regions has led to large C losses73-76, in addition to 276 

immediate ecosystem damage and land subsidence47,77. While most peatland management 277 

practices result in decreased CH4 emissions due to drainage32, peatland inundation or rewetting 278 

can lead to episodic CH4 releases78-79. Lastly, the structure and function of peatlands are now 279 

threatened by increased N availability and atmospheric phosphorus (P) deposition80 from 280 

anthropogenic emissions81. For example, Sphagnum moss cover dies off after a few years of 281 

sustained N loading82-84; changes in climate can exacerbate these negative effects85. Changes in 282 

microbial communities and litter quality associated with N deposition can also contribute to 283 

increased decomposition86-87 by lowering the peatland surface88 and causing a rise in the water 284 

table and CH4 emission89. Conversely, a study reported C gain with modest N deposition in a 285 

Swedish peatland, driven by a greater increase in plant production than in decomposition90, 286 

illustrating differences, and perhaps a threshold response, in C balance response to N deposition.  287 

 288 

Quantification of Future Peatland Stocks  289 

During the rest of this century (2020 – 2100 CE) and the far future (2100 – 2300 CE), experts 290 

expect the C loss mechanisms presented above to be amplified (Figure 3). In the northern high 291 
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latitudes, while C gains are still linked to shifts in temperature and precipitation (17 (-16 to +47) 292 

and 3 (-37 to +32) GtC, respectively), C losses to fire are expected (-7 (-10 to 0) GtC). Many 293 

respondents suggest that better fire management could mitigate this. These losses are predicted 294 

to be accompanied by additional ones from permafrost degradation (-30 (-102 to +12) GtC), sea-295 

level rise that would inundate coastal peatlands (-3 (-9 to +1) GtC), and LUC (-14 (-38 to +3) 296 

GtC). The latter, and primarily drainage for agriculture, is expected to cause significant peatland 297 

C losses, though many experts expect the rate to slow with increasing conservation and 298 

restoration efforts. Regional drought-induced C losses are also suggested for the mid-latitude 299 

regions. In the tropics, experts generally agree that every agent of change will negatively impact 300 

C stocks. Net peat C losses are predicted due to warmer temperatures (-22 (-14 to +4) GtC; 301 

mean skewed outside 10th – 90th percentile range by an outlier), fires (-23 (-54 to -2) GtC), 302 

negative moisture balance (-9 (-31 to +3) GtC), and sea-level rise (-3 (-5 to 0) GtC). Of particular 303 

importance is the evolution of the El Niño Southern Oscillation, as El Niño droughts may lead to 304 

substantial C losses to the atmosphere. LUC (-13 (-44 to +3) GtC) is also predicted to play a key 305 

role in the future, as it could lead to the drainage of large peat basins, such as the Amazon and 306 

Congo.  307 

 308 

Experts’ confidence in their predictions declines for the far future (Tables S6 and S7; Figure S2), 309 

in part due to the lack of models capable of simulating the effect of agents of change on peatland 310 

C stocks, but also because policy and land management decisions will influence the future of 311 

peatlands. This is an area where the integration of peatlands into IAMs would allow the 312 

generation of pertinent scenarios to help inform the science, as well as policy options and land 313 

management decisions. A growing world population may put additional pressure on peatlands, as 314 

farming becomes possible at higher latitudes, and further deforestation may occur in the tropics, 315 

but the need to conserve peat resources may eventually outweigh these pressures. In this case, 316 

the adoption of policies designed to protect peatlands would greatly limit C losses. Likewise, the 317 

pricing of C could change the way peatlands are perceived, valued, and managed. These 318 

diverging opinions are all included in our assessment (Appendix 3), but explicit IAM simulations 319 
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would allow exploration of different policies and socio-economic scenarios. Noteworthy is that 320 

extra-tropical peatlands could play an important role, second only to the oceans, in reducing the 321 

global atmospheric CO2 concentration if cumulative anthropogenic emissions are kept below 322 

1000 GtC91-92. Mitigation is therefore highly important in counterbalancing the climate impact of 323 

peatland C loss93.  324 

 325 

 326 

Insights from the Expert Elicitation and their Limits  327 

Expert assessment is critical to inform decisions that require judgements that go beyond 328 

established knowledge and model simulations94. For this reason, expert opinion is often used in 329 

environmental assessments either as a means to assess confidence levels or rank potential 330 

outputs7, or as data points that offer estimates that could not be provided otherwise95,96. This 331 

expert assessment also highlights key knowledge gaps and uncertainties such as, for example, 332 

the impact of permafrost aggradation and degradation on the future peatland C balance (see SI 333 

and Figure S1). Our dataset reflects two main schools of thought that are anchored in conflicting 334 

evidence from the literature: (1) rapid C loss from deep peats and a slow recovery of the 335 

peatlands following permafrost thaw59-60, and (2) net C gain from rapidly recovering plant 336 

production due to warm and moist conditions following thaw1,28. Overall, results from the expert 337 

elicitation can be used to help prioritize which ecosystem mechanisms and properties should be 338 

integrated into ESMs; in turn, those model outputs will help constrain the peat-carbon-climate 339 

feedback and inform future data collection strategies. 340 

 341 

Our results indicate low to medium confidence in future C flux estimates. Confidence levels are 342 

highest for the post-LGM and Anthropocene time periods, in part reflecting the majority of paleo 343 

researchers in the survey respondents, but also because of compounding uncertainties pertaining 344 

to future levels of GHG emissions from the energy and land systems, patterns of land-use 345 

change, etc., which are affected by social, economic, political, and policy drivers (Appendix 3). 346 

The overall confidence levels for the post-LGM and Anthropocene is medium (a value of 3 on a 347 
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scale of 1 to 5); even highly self-rated experts (4-5) give low to medium confidence to some of 348 

their answers, which could suggest great uncertainty based on current literature (Tables S6 and 349 

S7, Figures S2, S3). For the rest of this century and the far future, confidence drops to low (a 350 

value of 2), likely reflecting the low confidence in our projection of human-based decisions (Figure 351 

S2, Appendix 3). Areas of research for which expertise is lowest include LUC, N deposition, and 352 

atmospheric pollution (Tables S8 and S9, Figure S2), which may have contributed to some of the 353 

low confidence levels mentioned above. Here again, results from the expert elicitation provide a 354 

unique opportunity to generate pertinent socio-economic scenarios that will help inform our 355 

science, policy options, and land management decisions. 356 

 357 

While this present assessment may be used as a bridge towards policy –decisions need to be 358 

made even when uncertainty is high and confidence is low – we are not interested in offering 359 

“consensus statements” on peatland C storage. Rather, our intent is to contribute a novel 360 

perspective that identifies the central tendencies, communicates uncertainties, and highlights 361 

contradictions to improve peat-C process understanding and press the community to add organic 362 

soils and peatland plant functional types in ESMs and IAMs (see SI for further discussion). 363 

Overall, results from the expert elicitation can help prioritize which ecosystem mechanisms and 364 

properties should be integrated into ESMs; in turn, those model outputs will help constrain the 365 

peat-carbon-climate feedback, inform future data collection strategies, and advance 366 

understanding by further testing different hypotheses. As such, the inclusion of peatland process 367 

understanding in models, and particularly better attribution of the role of each agent of change on 368 

peatland C dynamics, would help increase confidence in C flux predictions. Modeling efforts that 369 

include peatland dynamics would improve ESM and IAM outputs and benefit the peatland and 370 

climate research communities, in a positive feedback loop. 371 

 372 
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Figure Captions 835 
 836 
Figure 1: Integrating peatland knowledge in climate change modeling frameworks. A conceptual 837 
structure of (a) an Earth System Model (ESM), and (b) an Integrated Assessment Model (IAM). 838 
The ESM emphasizes peatland carbon, energy, water, and nutrient pools and exchanges with the 839 
atmosphere, aquatic/freshwater systems, and the world’s oceans. The IAM focuses on the 840 
importance of considering peatlands in policy options and land management decisions, as these 841 
carbon-rich ecosystems can significantly contribute to GHG emission reduction strategies. Grey 842 
arrows represent fluxes with important contribution from peatlands; white arrows represent non-843 
peatland fluxes; ES: ecosystem services; GDP: gross domestic product; GHG: greenhouse gas. 844 
 845 
Figure 2: The main agents of change impacting the global peatland carbon balance globally. 846 
Using an expert elicitation combined with a literature review, the importance of each agent in the 847 
past, present, and future is semi-quantitatively assessed in this study. Infographic created by 848 
Patrick Campbell. For a high-resolution image without text details and a brief review of each 849 
agent of change, see Appendix 5. 850 
 851 
Figure 3: Expert assessment of the global peatland carbon balance over time. Changes in carbon 852 
stocks are shown for the extra-tropical northern region (blue) and the (sub-)tropical region 853 
(yellow) for the post-LGM (21,000 BP – 1750 CE), Anthropocene (1750 – 2020 CE), Near Future 854 
/ Rest of this Century (2020 – 2100 CE), and Far Future (2100 – 2300 CE). Agents of change: 855 
temperature (T), moisture (M), sea-level (SL), fire (F), land use (LU), permafrost (P), nitrogen 856 
deposition (N), atmospheric pollution (AP). Columns: arithmetic means; error bars: 80% central 857 
range. Positive values represent carbon sinks to the atmosphere. Individual survey responses are 858 
shown in Figure S1. 859 
 860 





PEATLANDS
Agents of Change

Permafrost 
Aggradation slows down peat accumulation 
rates and preserves existing deposits by 
stopping decomposition. Degradation may lead 
to collapse and rewetting, which stimulates 
plant production and can lead to large methane 
emissions. If the meltwater drains away, 
enhanced peat decomposition is expected. A 
transient carbon sink may be found where 
conditions are wet enough to promote plant 
growth and peat burial. 

Temperature 
The primary driver of northern peatland carbon 
accumulation over the Holocene. Warming can 
contribute to increases in plant productivity and 
peat burial in some regions, but to enhanced 
decomposition and carbon loss in others. 
Temperature works in tandem with moisture.  
Peatlands have spread across vast landscapes 
during deglacial warming and may spread towards 
the poles under warming scenarios.

Moisture 
A necessary condition for peat development that 
also plays a key role in regulating peat carbon 
accumulation rates and atmospheric flux exchange. 
Surface wetness and moisture balance also control 
plant communities, which in turn impact the ratio of 
CO2 vs CH4 emitted to the atmosphere. Moisture 
balance is intricately connected to, and feedbacks 
with, peatland hydrology, plant productivity, and 
peat decomposition, which are also impacted by 
temperature.

ATMOSPHERIC POLLUTION 
Nitrogen deposition promotes plant production and 
accelerates peat decomposition. A threshold beyond 
which peat moss can no longer compete with rooted 
plants (shrubs) has been suggested; such 
conditions would lead to plant community changes 
and a loss in recalcitrance. While mineral dust and 
carbon dioxide fertilization may enhance peatland 
biomass production, sulfur compounds have caused 
peat erosion and and vegetation changes in coal-
burning parts of the world. 

Sea Level 
A control on peatland initiation in regions of 
land uplift and/or lowering sea levels. 
Isostatic uplift produces new substrates for 
peatland expansion. While rapid sea level 
rise inundates existing peatlands, moderate 
sea level rates may allow for peats to keep 
pace and accrete additional material. Coastal 
erosion also shown to accompany sea level 
rise.

Fire 
Peat burning leads to direct losses of plant 
and peat carbon. A peat fire can be followed 
by rapid carbon recovery from increased 
plant production. Drier conditions may 
render peatlands more vulnerable to fire 
and disturbance, in addition to accelerating 
permafrost thaw. Peatlands tend to recover 
from fires, though an increase in frequency 
and/or intensity could lead to deeper burns 
and harder recovery.

Land use 
Drainage and conversion of peatlands for 
agriculture, sylviculture, harvest, and other lead to 
a loss of the capacity to store carbon. In many 
cases, large carbon losses to the atmosphere also 
occur due to intensified peat decomposition. The 
adoption of international agreements or 
regulations on peat use could lead to the 
implementation of restoration practices and 
protection schemes that may halt carbon losses. 
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Main section 
The main section of this Supplementary Information (SI) file contains details that pertain to: (1) survey development and 
justification, (2) survey implementation and responses, (3) survey results, and (4) self-assessment of confidence and 
expertise. It also includes the Tables and Figures listed below: 
 
Table S1: census questions 
Table S2: number of respondents, high-latitude peatlands 
Table S3: number of respondents, tropical peatlands 
Table S4: descriptive statistics, high-latitude peatlands 
Table S5: descriptive statistics, tropical peatlands 
Table S6: confidence of survey respondents, high-latitude peatlands 
Table S7: confidence of survey respondents, tropical peatlands 
Table S8: expertise of survey respondents, high-latitude peatlands 
Table S9: expertise of survey respondents, tropical peatlands 
Table S10: descriptive statistics, high-latitude peatlands (expertise E>2 only) 
Table S11: descriptive statistics, tropical peatlands (expertise E>2 only) 
Figure S1*: all survey results (individual data points) 
Figure S2*: all self-reported confidence and expertise levels, organized by time period and peatland region  
Figure S3*: comparison of survey results from all respondents vs. those from highly self-rated experts  
 
*Figures S1, S2, and S3 are also presented as Extended Data. 
 
Appendices 
Appendix 1: expert opinion survey 
Appendix 2: case studies cited by survey respondents and used to make the maps shown in the main text 
Appendix 3: key comments from survey respondents   
Appendix 4: references cited by survey respondents 
Appendix 5: peatland infographic without text and brief review of the main peatland agents of change 
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1. Survey development and justification 
Members of the IGBP-PAGES C-PEAT working group met at Texas A&M University in May 2018 to discuss the future 
scientific targets of this community. During this meeting, the participants worked towards identifying the main knowledge 
gaps in peat science, with an emphasis on tipping points under a changing climate and increasing land-use change. It 
was determined that, to address these gaps, an assessment of the relative role of each agent of change on the peatland 
C stock was needed. The key agents of change in peatlands (temperature, moisture balance, sea-level, fire, land-use, 
permafrost, N deposition and atmospheric pollution) were identified by meeting participants. The main components of this 
manuscript were also designed during the discussions held at the meeting in Texas, where the participants developed the 
idea of an expert survey and literature review to fill in identified gaps that were considered important, and that would allow 
to build Figure 3 (see main text). The survey (Appendix 1) was developed in May 2018 through consultation with a subset 
of peatland experts and administered online using Qualtrics; it was inspired by a survey that was developed by the 
Permafrost Carbon Network1. The survey was accompanied by three census questions to assess each respondent’s 
career stage (Table S1); 38 out of the 44 survey respondents provided answers to the census questions. The lead authors 
submitted the survey to Texas A&M University’s Institutional Review Board (IRB), who determined that the proposed 
activity was not research involving human subjects as defined by DHHS and FDA regulations, and that further IRB review 
and approval was not required.  
 
 

Census questions Census answers 

What is your career stage? 
graduate student: 4          post-doc: 12 

faculty/lecturer: 16            research scientist: 6       

Received your PhD within the past 5 years? yes: 9                                no: 29 

Received your PhD more than 20 years ago? yes: 4                                no: 34 

 
Table S1: Census questions asked to the survey respondents. 

 
 
The survey asked one general question: “What is the relative role of each agent of change for shifting the peatland C 
balance in the past, present, and future?” Experts were asked to provide quantitative estimates of C gain or loss for 
northern high-latitude and tropical peatlands. They were also asked to break down their estimates into the following four 
periods: post-LGM (21 ka – 1750 AD), Anthropocene (1750-2020 AD), near future / the rest of this century (2020-2100 
AD), and far future (2100-2300 AD). To identify areas of consensus and uncertainty, we requested that respondents use 
self-assessed confidence and expertise scores to weight their answers accordingly. The five-point scale goes from 1 
(“very low”) to 5 (“very high”); see Appendix 1 for details. We also asked the experts to provide comments pertaining to 
their deductive approach on how they estimated the magnitudes of the carbon budget and/or to provide key literature 
references in support of their view. In many cases, experts used these “comments box” to provide semi-quantitative 
estimates rather than quantitative ones. We computed two sets of results: one that includes all answers, and one that only 
includes results from self-rated expertise of 3-4-5 (Figure S3). In the analysis presented in the main paper, we chose to 
include all answers, even those with a self-rated expertise of 1 and 2, as those answers did not affect the statistical 
distribution of the responses or skew the measures of centrality one way or another, in most cases (but see Figure S3 and 
associated text).    
 
In common with many other studies, this expert elicitation is based on individual literature review and does not yield new 
scientific data per se. Instead, it produces new scientific evidence and insights that are greater than the sum of the 
collective inputs from each individual expert2. Experts also draw from their harder-to-pin-down comprehensive mental 
maps that come from their experience, observations, fieldwork, etc. The publication of expert opinions makes the views of 
scientists transparent to a wider public, highlights key uncertainties and levels of agreement, and communicates any 
potential positive feedbacks or tipping points to stakeholders3. Building a bridge between scientists and other stakeholders 
is important, particularly in situations where policy decisions must be made based on limited or conflicting data4. Overall, 
we argue that the elicitation of expert opinion is an objective way to synthesize a range of individually biased assessments 
(e.g., over- and under-confidence, anchoring)5. This “balance-of-bias approach”6 allows us to compare and contrast 
individual views, in addition to providing a broad understanding of those diverging and converging opinions via synthesis. 
In other words, the voice of each expert is a “spot” in a diagram (Figure S1) that integrates and relates different types of 
knowledge. But the sum of these spots provides more than a simple collection of individual responses: it articulates the 
state of knowledge and elaborates the uncertainties facing our scientific community. 
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2. Survey implementation and responses 
To gain a full picture of the state of scientific knowledge, we purposefully sought responses from researchers across a 
range of disciplines (e.g. paleoecology, flux data, modelling) and career stages. The survey was distributed using the C-
PEAT and FLUXNET mailing lists in October 2018. There was a total of 44 respondents. The majority were based in the 
UK (16) and North America (USA and Canada, 15), with other respondents from elsewhere in Europe (Belgium, France, 
Germany, Switzerland, Sweden, 8) and the rest of the world (Argentina, Australia, Colombia, Sri Lanka, Thailand, 5). 
From a career stage perspective, our respondents included at least the following demographics (38 out of 44 respondents 
answered the census questions): 4 graduate students, 12 post-docs, 16 faculty/lecturers, and 6 research scientists. Of 
this sample, 9 have received their PhDs within 5 years, 4 got theirs over 20 years ago, and 25 were in between (Table 
S1). Of the 44 respondents, 12 participated in the C-PEAT meeting in Texas. Note that there were no discussions about 
the survey, beyond that it should be conducted, at the Texas workshop.  
 
On average, there was a slightly higher proportion of responses for northern high-latitude peatlands (overall mean across 
all time periods and drivers was 13.3 respondents) compared to tropical peatlands (11.2 respondents). Likewise, 
responses were not evenly distributed within the survey structure. For high-latitude peatlands, temperature was the driver 
with the most responses, with other drivers being relatively evenly distributed, and N deposition and atmospheric pollution 
receiving the fewest answers (Table S2). For tropical peatlands, responses were mostly evenly distributed across drivers, 
again with the exception of N deposition and atmospheric pollution that received fewer answers (Table S3). The 
distribution of responses across time periods was relatively even, with generally fewer responses for the far future (Tables 
S2 and S3). 
 

Agents of change Post-LGM Anthropocene Near Future Far Future Mean for drivers 

Temperature 26 24 19 15 21.0 

Moisture balance 10 13 18 12 13.2 

Sea level 16 10 13 11 12.5 

Fire 15 13 15 13 14.0 

Land use 15 22 19 15 17.8 

Permafrost 16 13 15 10 13.5 

N deposition 10 9 8 7 8.5 

Atmospheric pollution 9 6 6 4 6.5 

Mean for time periods 14.6 13.8 14.1 10.9 13.3 

 
Table S2: Number of respondents for each time period and driver for high-latitude peatlands. 

 
 

Agents of change Post-LGM Anthropocene Near Future Far Future Mean for drivers 

Temperature 16 17 18 16 16.8 

Moisture balance 16 15 14 9 13.5 

Sea level 14 9 7 8 9.5 

Fire 11 12 13 9 11.3 

Land use 10 16 14 11 12.8 

N deposition 9 8 7 7 7.8 

Atmospheric pollution 9 6 6 6 6.8 

Mean for time periods 12.1 11.9 11.3 9.4 11.2 

 
Table S3: Number of respondents for each time period and driver for the tropical peatlands. 
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3. Survey results 
The anonymous individual survey results are presented in Figure S1. The mean, median, geometric mean (log 
transformation), weighted averages (see below for details), and the 10th – 90th percentiles are shown in Table S4 for the 
high latitudes and in Table S5 for the tropics. While results tended to be clustered for most questions, a few low- or high-
end estimates often skewed the distribution of values to the right or to the left of that cluster (Figure S1). This skewness 
influenced the mean values, which were always farther out than the medians. While the medians were not affected by 
those extreme values, they didn’t quite capture what was revealed by the spread of data for that same reason; ignoring 
extreme results is not our intention (Tables S4 and S5). Therefore, we also calculated the geometric means to represent 
the central tendency of each distribution. A geometric mean normalizes differently-ranged values by multiplying all values 
of a given sample and taking the nth root, similar to a log transformation. It is therefore an appropriate measure when 
values change exponentially and in case of skewed distribution7-8. Since the geometric mean cannot be computed if any 
of the values are zero or negative, we added 1000 to each value to make all values positive prior to executing the 
statistical analysis. Weighted means were also computed by multiplying each C flux by the expertise level of the 
respondent to further assess the importance of expertise on our results. For example, a C stock of 45 Gt estimated by an 
expert with a self-assessed expertise of 3 was turned into a value of 45 * 3 = 135. Then, for each driver and time period, 
the sum of the multiplied responses was divided by the sum of the expertise scores to give the weighted mean result. 
Those results are presented along the means, medians, and geometric means in Tables S4 and S5.  
 

 
Agents of change Post-LGM Anthropocene Near Future Far Future 

Temperature 514(mean) / 492(med) / 461(geo) / 565(WA) 
60 – 890(10th – 90th percentiles) 

16 / 15 / 16 / 18 
0 – 38  

6 / 7 / 6 / 6 
0 – 14  

11 / 9 / 11 / 13 
-16 – 33  

Moisture balance 220 / 215 / 203 / 184 
10 – 570 

11 / 5 / 11 / 9 
-1 – 31  

5 / 2 / 5 / 4 
-7 – 10  

-2 / -2 / -2 / -1 
-30 – 22  

Sea level -2 / 19 / -7 / 3 
-136 – 99  

0 / 0 / 0 / 0 
0 – 1  

-1 / 0 / -1 / -1 
-4 – 0  

-2 / -1 / -2 / -2 
-5 – 1  

Fire -33 / -10 / -33 / -34 
-92 – 0  

-3 / -3 / -3 / -4 
-8 – 0  

-3 / -1 / -3 / -3 
-10 – 0  

-5 / -1 / -5 / -4 
-10 – 1  

Land use -11 / -1 / -11 / -12 
-39 – 0  

-7 / -3 / -7 / -7 
-23 – 0  

-9 / -1 / -9 / -7 
-20 – 2  

-5 / -1 / -5 / -4 
-18 – 1  

Permafrost 121 / 45 / 109 / 99 
-14 – 349  

3 / 2 / 3 / 3 
0 – 10  

-10 / -1 / -10 / -7 
-27 – 3  

-21 / -1 / -21 / -15 
-75 – 9  

N deposition -1 / 0 / -1 / -1 
0 – 1  

1 / 1 / 1 / 1 
-1 – 2  

-1 / 0 / -1 / -2 
-2 – 1  

1 / 0 / 1 / 0 
1 – 3  

Atmospheric 
pollution 

0 / 0 / 0 / 0 
0 – 0  

0 / 0 / 0 / 0 
-1 – 1  

0 / 0 / 0 / 0 
-2 – 1  

-1 / 0 / 1 / -1 
-3 – 0  

 
Table S4: Summary survey results for high-latitude peatlands. The mean, median (med), geometric mean (geo), weighted 
averaging (WA), and 10th and 90th percentiles are shown. Units in GtC. Positive values represent peatland sinks, negative 

values represent peatland sources to the atmosphere. 
 
 

 
Agents of change Post-LGM Anthropocene Near Future Far Future 

Temperature 43(mean) / 25(med) / 41(geo) / 49(WA) 
0 – 128(10th – 90th percentiles) 

5 / 1 / 5 / 7 
-3 – 19   

-19 / 0 / -22 / -27 
-4 – 2   

-3 / -1 / -3 / -5 
-10 – 2  

Moisture balance 268 / 85 / 183 / 339 
24 – 360  

3 / 0 / 3 / 4 
-6 – 17   

-2 / 0 / -2 / -2 
-10 – 1   

-7 / 0 / -7 / -9 
-21 – 2   

Sea level 7 / 6 / 6 / 6 
-13 – 52   

3 / 0 / 2 / 4 
0 – 12   

-1 / 1 / -1 / -1 
-2 – 0   

-1 / -1 / -1 / -2 
-3 – 0   
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Fire -3 / 0 / -3 / 0 
-10 – 0   

-4 / -5 / -4 / -4 
-10 – 0   

-7 / -10 / -7 / -6 
-19 – 0   

-16 / -10 / -16 / -18 
-35 – -2   

Land use 0 / 0 / 0 / 0 
-1 – 0   

-8 / -6 / -8 / -7 
-14 – -2   

-6 / -8 / -6 / -3 
-19 – 0   

-7 / -8 / -7 / -5 
-25 – 3   

N deposition 0 / 0 / 0 / 0 
0 – 0   

0 / 0 / 0 / 0 
0 – 0   

0 / 0 / 0 / 0 
0 – 1   

0 / 0 / 0 / 0 
0 – 0   

Atmospheric 
pollution 

0 / 0 / 0 / 0 
0 – 0  

0 / 0 / 0 / 0 
0 – 0   

-1 / 0 / -1 / -1 
-3 – 0   

0 / 0 / 0 / 0 
0 – 0  

 
Table S5: Summary survey results for tropical peatlands (30°N - 30°S). The mean, median (med), geometric mean (geo), 
weighted averaging (WA), and 10th and 90th percentiles are shown. Units in GtC. Positive values represent peatland sinks, 

negative values represent peatland sources to the atmosphere. 
 

The survey specifically asked experts to 
quantify the relative contribution of each 
agent of change to the peatland C stock, 
rather than total C inventories. Therefore, 
summing the values presented in Tables 
S4 and S5 in an attempt to calculate an 
expert-derived total C stock is not 
recommended, as it would likely imply 
some amount of double counting and it is 
possible that the answer for the total C 
stock would be different than that for the 
individual drivers. The post-LGM C stocks 
estimated via expert elicitation (Tables S4 
and S5) add up to 808 GtC and 315 GtC 
for high-latitude and tropical peatlands, 
respectively (based on arithmetic mean 
values). These values are much larger 
than most previous peat C estimates, 
which tend to be in the order of 500 GtC 
and 100 GtC for northern and tropical 
peatlands, respectively9. Our expert-
derived estimates are also approximately 
twice as large as suggested by simulation 
efforts that aim at balancing the post-
LGM C cycle10-11. While peatland C stock 
estimates in the order of 1000Gt have 
been suggested before12, mechanisms for 
additional post-LGM CO2 release (likely 
from the ocean) would be needed to 
conceive such a large land sink13. This 
discussion is well beyond the scope of 
this study. 
 
 

Figure S1: Full survey results. Each 
individual response is shown as a spot. 

Positive values represent peatland sinks, 
negative values represent peatland 

sources to the atmosphere. Where a 
range of values was given, the midpoint is 
used. Codes for drivers: T = temperature, 
M = moisture balance, SL = sea level, F = 
fire, LU = land use, P = permafrost, N = 
nitrogen deposition, AP = atmospheric 

pollution. 
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4. Self-assessment of confidence and expertise 
Our results indicate low to medium confidence in our projections (Tables S6 and S7; Figure S2). Confidence levels were 
highest for the post-LGM and Anthropocene time periods, in part reflecting the large fraction of paleo experts, but also 
because of the compounding uncertainties pertaining to world economy, politics, and policy making trajectories going 
forward.  
 

Agents of change Post-LGM Anthropocene Near Future Far Future 
Temperature 3.1 3.1 2.9 2.7 
Moisture balance 3.1 3.1 2.4 2.4 
Sea level 2.2 2.6 2.2 2.2 
Fire 2.4 2.4 1.9 1.9 
Land use 1.8 2.4 2.1 1.9 
Permafrost 2.8 3.2 2.7 2.7 
N deposition 1.8 2 1.5 1.6 
Atmospheric pollution 1.9 2.3 2 1.5 

 
Table S6: Mean confidence values for high-latitude peatland C flux estimates. Confidence values specified in the survey 

were 1 = very low, 2 = low, 3 = medium, 4 = high, 5 = very high. Shading represents 1 – 1.99, 2 – 2.99 and ≥3, with darker 
shading representing higher confidence. 

 
 

Agents of change Post-LGM Anthropocene Near Future Far Future 
Temperature 2.7 2.5 2.5 2.1 
Moisture balance 2.6 2.7 2.4 2.1 
Sea level 2.3 2.6 1.7 1.9 
Fire 2.7 2.8 2.4 2.3 
Land use 2.1 2.4 2.6 1.9 
N deposition 1.6 1.8 1.7 1.7 
Atmospheric pollution 1.6 1.8 1.8 1.5 

 
Table S7: Mean confidence values for tropical peatland C flux estimates. Confidence values specified in the survey were 
1 = very low, 2 = low, 3 = medium, 4 = high, 5 = very high. Shading represents 1 – 1.99 and 2 – 2.99, with darker shading 

representing higher confidence. 
 
 
Expertise ratings were used to test the effect of low self-assessed expertise on the overall dataset. For this, all answers 
with self-assessed expertise of 1 and 2 were removed and the summary data for the survey recalculated (Tables S8 and 
S9; Figure S2). On average, the number of respondents with self-assessed expertise of 3, 4, or 5 (from here, E>2) 
represented about 40% of the total dataset. Results were consistent across time periods, but varied between drivers. For 
example, for high-latitude peatlands, 69% of respondents were E>2 for temperature and permafrost (as high as 77% in 
the Anthropocene time period), whereas only 20% respondents were E>2 for atmospheric pollution. For tropical 
peatlands, E>2 represented over half of all responses for fire (51%), and near half for temperature (46%) and moisture 
(44%). Overall, for a few drivers, the n for E>2 data is low and results must be viewed with respective caution. Results 
from the E>2 survey respondents vs. those from the entire group were compared using the arithmetic means as central 
measures and the 10th – 90th percentiles to represent the spread of data (Figure S3); see Tables S10 and S11 for 
medians and geometric means.  
 

Agents of change Post-LGM Anthropocene Near Future Far Future Mean (drivers) 

Temperature 18 (69%) 18 (75%) 13 (68%) 9 (60%) 14.5 (69%) 

Moisture balance 6 (60%) 9 (69%) 8 (44%) 6 (50%) 7.3 (55%) 

Sea level 3 (19%) 4 (40%) 2 (15%) 2 (18%) 2.8 (22%) 

Fire 4 (27%) 4 (31%) 2 (13%) 2 (15%) 3 (21%) 
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Land use 3 (20%) 7 (32%) 5 (26%) 4 (27%) 4.8 (27%) 

Permafrost 11 (69%) 10 (77%) 9 (60%) 7 (70%) 9.3 (69%) 

N deposition 3 (30%) 2 (22%) 1 (13%) 1 (14%) 1.8 (21%) 

Atmosph pollution 2 (22%) 2 (33%) 1 (17%) 0 (0%) 1.3 (20%) 

Mean (time periods) 6.3 (43%) 7 (51%) 5.2 (46%) 3.9 (36%) 5.6 (42%) 

 
Table S8: Number of respondents with self-assessed expertise rating of 3, 4, or 5 for each time period and driver for high-
latitude peatland estimates. Values in parentheses represent the percentage of the total number of respondents for each 

category (from Table S2). 
 
 

Agents of change Post-LGM Anthropocene Near Future Far Future Mean (drivers) 

Temperature 8 (50%) 8 (47%) 9 (50%) 6 (38%) 7.8 (46%) 

Moisture balance 7 (44%) 9 (60%) 5 (36%) 3 (33%) 6 (44%) 

Sea level 5 (36%) 5 (56%) 1 (14%) 2 (25%) 3.3 (34%) 

Fire 6 (55%) 6 (50%) 6 (46%) 5 (56%) 5.8 (51%) 

Land use 4 (40%) 7 (44%) 6 (43%) 3 (28%) 5 (39%) 

N deposition 2 (22%) 2 (25%) 2 (29%) 2 (29%) 2 (26%) 

Atmosph pollution 1 (11%) 1 (17%) 1 (17%) 1 (17%) 1 (15%) 

Mean (time periods) 4.7 (39%) 5.4 (46%) 4.3 (38%) 3.1 (33%) 4.4 (39%) 

 
Table S9: Number of respondents with self-assessed expertise rating of 3, 4, or 5 for each time period and driver for the 
tropical peatland estimates. Values in parentheses represent the percentage of the total number of respondents for each 

category (from Table S3). 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S2: Distribution of survey respondents’ self-rated expertise (left 
column) and confidence (right column) reported by time period. Blue 

(yellow) bars represent high-latitude (tropical) peatlands. Confidence and 
expertise values specified in the survey were 1 = very low, 2 = low, 3 = 

medium, 4 = high, 5 = very high. 
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Agents of change Post-LGM Anthropocene Near Future Far Future 

Temperature 627(mean) / 500(med) / 565(geo) 
216 – 1402(10th – 90th percentiles) 

19 / 22 / 20 
1 – 38  

8 / 8 / 8 
0 – 15 

16 / 20 / 16 
-4 – 41  

Moisture balance 268 / 255 / 240 
0 – 550 

11 / 8 / 17 
0 – 23  

1 / 1 / 1 
-5 – 8  

1 / 5 / 1 
-19 – 18  

Sea level -2 / -8 / -9 
-42 – 26  

0 / 0 / 0 
-1 – 0  

-1 / 0 / -1 
0 – 0  

-2 / -1 / -1 
-1 – 0  

Fire -27 / -10 / -27 
-50 – -10 

-5 / -4 / -5 
-8 – -2  

-1 / -1 / -1 
-2 – -1 

-4 / -4 / -4 
-5 – -2  

Land use -2 / 0 / -3 
-4 – 0  

-4 / -4 / -4 
-15 – 8  

1 / 1 / 1 
0 – 4 

0 / 0 / 0 
0 – 1  

Permafrost 136 / 10/ 116 
-15 – 624  

4 / 3 / 5 
0 – 10  

-2 / 0 / -2 
-8 – 5  

-2 / 0 / -2 
-21 – 11  

N deposition 0 / 0 / - 
0 – 0  

2 / 1 / 2 
-1 – 4  

-5 / -5 / -5 
-9 – -1  

0 / 0 / -1 
-1 – 0  

Atmospheric 
pollution 

0 / 0 / - 
0 – 0  

0 / 0 / 0 
0 – 1  

0 / 0 / 0 
0 – 0  

0 / 0 / 0 
0 – 0  

 
Table S10: Summary survey results for high-latitude peatlands for survey respondents who self-rated their expertise as 3, 
4, or 5. The mean, median (med), geometric mean (geo), and 10th and 90th percentiles are shown. Units in GtC. Positive 

values represent peatland sinks, negative values represent peatland sources to the atmosphere. 
 
 

 
Agents of change Post-LGM Anthropocene Near Future Far Future 

Temperature 57(mean) / 25(med) / 63(geo) 
4 – 143(10th – 90th percentiles) 

10 / 5 / 13 
-2 – 25   

-31 / -2 / -36 
-60 – 2   

-6 / -4 / -6 
-13 – -1  

Moisture balance 482 / 30 / 313 
26 – 1368  

8 / 2 / 8 
-5 – 29   

-2 / 0 / -2 
-10 – 6   

-9 / -9 / -9 
-20 – 2   

Sea level 15 / 23 / 15 
-5 – 29   

4 / 1 / 8 
0 – 11   

-1 / -1 / -1 
-1 – -1   

-3 / -3 / -3 
-4 – -2   

Fire 3 / 0 / 4 
-1 – 10   

-5 / -8 / -5 
-14 – 8   

-7 / -10 / -7 
-17 – 6   

-20 / -15 / -21 
-38 – -6   

Land use 0 / 0 / 0 
0 – 0   

-3 / -4 / -3 
-9 – 4   

3 / -5 / 2 
-11 – 23  

1 / -4 / 1 
-20 – 26   

N deposition 0 / 0 / - 
0 – 0   

0 / 0 / - 
0 – 0   

0 / 0 / - 
0 – 0   

0 / 0 / - 
0 – 0   

Atmospheric 
pollution 

0 / 0 / - 
0 – 0  

0 / 0 / - 
0 – 0   

-5 / -5 / -5 
-5 – -5   

0 / 0 / - 
0 – 0  

 
Table S11: Summary survey results for tropical peatlands (30°N - 30°S) for survey respondents who self-rated their 

expertise as 3, 4, or 5. The mean, median (med), geometric mean (geo), and 10th and 90th percentiles are shown. Units in 
Gt C. Positive values represent peatland sinks, negative values represent peatland sources to the atmosphere. 
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Figure S3: Comparison of full survey vs. E>2 respondents. Data shown as mean and 10th – 90th percentiles. High-latitude 
peatland results shown in blue (dark = all data, light = E>2). Tropical peatland data shown in yellow (dark yellow = all 
data, light beige = E>2). Positive values represent peatland sinks, negative values represent peatland sources to the 
atmosphere. Codes for drivers: T = temperature, M = moisture balance, SL = sea level, F = fire, LU = land use, P = 

permafrost, N = nitrogen deposition, AP = atmospheric pollution. 
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Overall, this expert assessment revealed key knowledge gaps and uncertainties; it also highlighted the need for 
fundamental research on several aspects of the peatland C sink capacity. For example, the role of sea-level since the 
post-LGM warming received a wide range of opinions, likely caused by the respondents’ regional expertise. The impact of 
permafrost aggradation and degradation on peat C similarly received a wide range of responses, both in magnitude and 
even in sign (Figure S1). For instance, some experts perceived the presence of permafrost as the dominant cause for C 
stock preservation across the northern high latitudes. More work is needed to distinguish which peatlands grew in 
syngenetic permafrost (i.e., peat accumulation and permafrost aggradation take place concurrently) vs. those that became 
frozen much later during their development. In terms of future permafrost degradation, our dataset reflects two main 
schools of thought that are anchored in conflicting evidence from the literature. The first group expects rapid C loss from 
deep peats in the form of CH4 (and CO2 following CH4 oxidation) and a slow recovery of the peatlands following 
permafrost thaw, land subsidence, and soil saturation; the second group expects a net C gain from rapidly recovering 
plant production due to warm and moist conditions following thaw. Lastly, we did not separate different peatland types 
(e.g., bogs, fens) but their individual responses to agents of change could vary. Also, the following understudied regions 
still limit our understanding of global peatland C dynamics: (1) tropics, (2) Far-East Russia, (3) southern hemisphere 
(particularly Australia and New Zealand), and (4) high-elevation and mountain regions.  
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Appendix 1: Expert opinion survey 
 

Vulnerability of Peatland Carbon Stocks: 
Expert Assessment Survey 

 
Introduction 
The goal of this survey is to use an expert assessment approach to determine the magnitude of changes in the peat 

carbon budget during: (a) the post-LGM (21000 BP-1750 AD), (b) the Anthropocene (1750-present), (c) the near future 

(present-2100 AD), and (d) the far future (2100-2300 AD). We are particularly interested in expert opinion regarding the 

relationship between a series of drivers and the peatland carbon budget that could lead to ‘surprises’ (i.e., possible 

thresholds and tipping points), since such non-linearity is difficult to predict on the basis of models. You will be asked to 

provide separate estimates of the peatland carbon budget for (a) tropical and (b) high-latitude peatlands. We request 

that you fill in both, whatever your expertise level, as we wish to identify where there is consensus of opinion and where 

there is greater uncertainty. You will be provided with the opportunity to let us know how confident you are for each 

one of your answers; if you have little or no expertise concerning a particular question, skip it and indicate your 

expertise level as 1 (see below).  
 

We recognize that all the different components of peatland carbon dynamics are difficult to quantify and are not, and 

cannot be, precisely and definitively modeled or measured. As such, we are only asking for your informed opinion, 

realizing that some of the included parameters may not be well understood. By administering this survey to scientists 

with the most relevant expertise, we want to identify and evaluate the possible and probable magnitude of peatland 

fluxes.  

 
Instructions 
Please answer each question below for tropical and high-latitude peatlands. Immediately next to your answer, indicate 

your level of confidence and your expertise concerning your answer. Additionally, we ask you to provide comments 

pertaining to your approach on how you estimated the magnitudes of the carbon budget and/or key literature 

references in support of your view; this will allow us to compare responses from multiple experts. If the answer to a 

particular question is currently unknown, but there is a particular research direction that you think could resolve some 

of that uncertainty, please provide details in the “comments” space. If you have little or no expertise concerning a 

particular question, skip it and indicate your expertise level as 1.  
 
The five-point “Confidence level” scale is defined as follows (see Figure 1): 
 
1 I have very low confidence in my answer; it is 

my best guess but it could easily be far off the 

mark. Scientific uncertainty on this issue is 

very large due to limited evidence AND low 

agreement.  

2  I have low confidence in my answer; it is as 

good as anyone can offer at this time. 

Scientific uncertainty on this issue is large due 

to limited evidence OR low agreement. 

3  I have medium confidence in my answer; it is 

as good as anyone can offer at this time. 

Scientific uncertainty on this issue is moderate. 

The true value is likely to be different from my 

answer. 
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4  I have high confidence in my answer; it is the best anyone can offer at this time. Scientific uncertainty on this issue 

is low due to robust evidence OR high agreement.  

5  I have very high confidence in my answer and would be surprised if it was far off from the true value. Scientific 

uncertainty on this issue is very low due to robust evidence AND high agreement. 

 

 

The five-point “Expertise level” scale is defined as follows: 

 

1 I have no familiarity with the literature and I do not actively work on this particular question. 

2  I have some familiarity with the literature and have worked on related questions but I haven't contributed to the 

literature on this issue; and I am not an expert on this question. 

3 I am familiar with, and have contributed to, the literature in related topics, but I do not consider this issue to be 

central to my expertise; I have worked on related issues.  

4 I have contributed to the relevant literature and have worked on this specific issue, but do not consider myself one 

of the foremost experts on this particular issue. 

5 I contribute actively to the literature directly concerned with this issue, and I consider myself one of the foremost 

experts on it. 

 

 

 

 

Feel free to share this survey with other peatland scientists who may not be C-PEAT or FLUXNET members. 
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1. For high-latitude northern peatlands only (> 45N). How much cumulative peatland carbon release or uptake from the atmosphere is due to 
the different drivers during the different time periods (Gt Carbon absorbed or emitted as either CO2, CH4 or DOC). If you wish to comment on southern 
peatlands (> 45S), please do so using the space provided in Question 3. If you can’t quite isolate the role of each driver of change (e.g., temperature vs. moisture 
balance), please explain your answer in the “comments” space provided. Note that the average apparent carbon sink for the last millennium is ~ 0.14 Gt C per 
year for global peatlands (Gallego-Sala et al. 2018). 

Driver        

Post-LGM (21000 BP – 1750 AD) 
peatland flux (sink/source) 

Anthropocene (1750 –  present) 
peatland flux (sink/source) 

Near Future (present – 2100) 
peatland flux (sink/source) 

Far Future (2100 – 2300)     
peatland flux (sink/source) 
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2. For lowland (sub-)tropical peatlands only (from 30N to 30S). How much cumulative peatland carbon release or uptake from the 
atmosphere is due to the different drivers during the different time periods (GT Carbon absorbed or emitted as either CO2, CH4 or DOC). If you wish to comment 
on montane peatlands, please do so using the space provided in Question 3. If you can’t quite isolate the role of each driver of change (e.g., temperature vs. 
moisture balance), please explain your answer in the “comments” space provided. Note that the average apparent carbon sink for the last millennium is ~ 0.14 
Gt C per year for global peatlands (Gallego-Sala et al. 2018). 
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3. Other comments. If you wish to provide additional comments on southern high-latitude peatlands, tropical montane peatlands, or peatland areas that 
were excluded above, or if you have any other comments, please do so here:  
 
 
 
 
 
 
 
 
 
On behalf of the C-PEAT steering committee, we thank you for your answers. We will contact you in December with updated information. 
Don’t forget to provide your name and email address in the online survey.   
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Appendix 2: Maps and case studies 
 
 
Survey respondents provided examples from the peer-reviewed literature to document the effect of each 
agent of change on peatland C budget (Tables A2.1 and A2.2, below). The maps presented below (Figure 
A2.1) show the location of a subset of these case studies (Tables A2.3 and A2.4). References cited in 
Tables A2.1 through A2.4 can be found in Appendix 4. 
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Agents of change Peatland processes Regions References 
Deglacial climate warming .Rapid peat initiation 

.Rapid lateral expansion 

.Rapid vertical accumulation 

northern high-
latitudes, south 
Patagonia 

.Synthesis work: Smith et al. 2004; MacDonald et al. 2006; Yu et al. 2009, 2010; Jones 
and Yu 2010; Loisel et al. 2014 
.Individual sites: Lacourse et al. 2019; Weckström et al. 2010; Mathijssen et al. 2019; 
Ratcliffe et al. 2018; Swinnen et al., 2019  

Neoglacial climate cooling .Slow vertical accumulation northern high-
latitudes 

Synthesis work: Yu et al. 2009; Loisel et al. 2014 ; Garneau et al. 2014 
.Individual sites: Yu 2006 

MCA climate warming .Rapid vertical accumulation northern high-
latitudes  

Synthesis work: Charman et al. 2013 

LIA climate cooling .Slow vertical accumulation northern high-
latitudes, south 
Patagonia  

.Synthesis work: Charman et al. 2013 

.Individual sites: Mauquoy et al. 2002, 2004; Galka et al. 2014; Chambers et al. 2014 

Lower surface moisture  .Lake-to-peat transition 
.Fen-to-bog transition 

south Patagonia; east 
Canada 

.Synthesis work: Loisel & Yu 2013; Väliranta et al. 2017 

.Individual sites: Heusser 1993; Markgraf & Huber 2010; van Bellen et al. 2013; De 
Vleeschouwer et al. 2014; Mansilla et al. 2018 

Higher surface moisture .Rapid lateral expansion 
.Pool inception 
.Bog-to-fen transition 
.Rapid vertical accumulation 

northern high-
latitudes; NE China; 
Congo Basin 

.Synthesis work: Korhola et al. 2010; Ruppel et al. 2013; Xing et al. 2015; Treat et al. 
2016 
.Individual sites: Foster et al. 1988; Foster & Wright 1990; Dargie et al. 2017; Garneau et 
al. 2018  

Multi-decadal droughts .Slow vertical accumulation 
.Rapid vertical accumulation 

continental North 
America, Amazon 

.Synthesis work: Booth et al. 2005 

.Individual sites: Swindles et al. 2018 
Early-Holocene high fire 
frequency 

.Peat loss (burnt) south Patagonia, 
Canada  

.Synthesis work: Huber & Markgraf 2003 

.Individual sites: Kuhry 1994; Camill et al. 2009 
Sea level rise / Marine 
incursion 

.Peat loss (eroded) 

.Peat flooding and burial 
SE Asia, south Africa, 
south Patagonia 

.Synthesis work: Dommain et al. 2011 

.Individual sites: McCulloch & Davies 2001; Unkel et al. 2010; Gabriel et al. 2017 
Sea level fall / Isostatic 
rebound 

.Peat initiation Southeast Asia, 
Hudson Bay lowlands 

.Synthesis work: Dommain et al. 2014; Packalen et al. 2014; Packalen & Finkelstein 2014 

.Individual sites: Glaser et al. 2004; Rieley et al. 2008 
Neoglacial permafrost 
aggradation 

.Slow vertical accumulation pan-boreal and 
subarctic 

.Synthesis work: Vitt et al. 2000; Treat & Jones 2018 

.Individual sites: Robinson & Moore 1999; Vardy et al. 2000; Oksanen et al. 2001; 
Oksanen 2006; Kuhry 2008; Sannel & Kuhry 2008; Kokfelt et al. 2010; Pelletier et al. 
2017; Kiellman et al. 2018; Sannel et al. 2018; Beilman et al. 2009  

Peat initiation in 
thermokarsts 

.Rapid vertical accumulation Alaska .Individual sites: Jones et al. 2013 

LIA permafrost aggradation .Slow vertical accumulation eastern Canada .Individual sites: Lamarre et al. 2012 
Atmospheric dust / tephra 
deposition 

.Rapid vertical accumulation 

.Slow vertical accumulation 
south Patagonia, 
Japan, eastern 
Europe 

.Synthesis work: Fontjin et al.2014; Smith et al., 2019 

.Individual sites: Hughes et al. 2013 ; Vanneste et al. 2016; Fialkiewicz-Koziel 
et al. 2016; Mansilla et al. 2018 

Table A2.1: Post-LGM case studies. 
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Agents of change Peatland processes Regions Period / 
duration 

Effect on 
C sink 

References 

Climate warming .Fen-to-bog transition 
.Rich-to-Poor fen transition 
.Rapid vertical accumulation 
.Shrub expansion 

Alaska, 
Scandinavia, 
Zoige Plateau 

Last 100 yr Gain Synthesis work:  
Individual sites: Loisel & Yu 2013 ; Wang et al. 2015 ; Gałka et al. 
2018; Taylor et al. 2019; Klein et al. 2013; Gałka et al. 2017; 
Lamentowicz et al. 2008, 2009, 2011 

Lower surface 
moisture 

.Sphagnum expansion 

.Rapid vertical accumulation 

.Peat loss (decay)  

western Canada, 
Finnish Lapland, 
European Russia, 
south Patagonia, 
Poland 

Last 200 yr  Unk. Synthesis work:  
Individual sites: Magnan et al. 2018; van Bellen et al. 2018; Zhang 
et al. 2018; van Bellen et al. 2016; Gałka et al. 2014; Piilo et al. 
2019; Marcisz et al. 2015; van der Knaap 2011   

Permafrost 
degradation 

.Rapid vertical accumulation 

.Peat loss (decay) 
High boreal and 
subarctic 

Last ~250 yr Unk. Synthesis work: Treat & Jones 2018 
Individual sites: Payette et al. 2004; Turetsky et al. 2000, 2002, 
2007; Camill et al. 2001; Camill 1999; Estop-Aragonès et al. 2018; 
Pelletier et al. 2017; Sannel & Kuhry 2011; Swindles et al. 2015; 
Jorgenson et al. 2001; O’Donnell et al. 2012 

High fire frequency 
and intensity 

.Peat loss (burnt and 
smoldering) 

boreal region, 
Indonesia, 
southern 
Patagonia 

Last 200 yr Unk. Synthesis work: Turetsky et al. 2004, 2011; Kasischke & Bruhwiler 
2002; van der Werf et al. 2010 
Individual sites: Lavoie & Pellerin 2007; Hope et al. 2005; Cole et 
al. 2015; Huber & Markgraf 2003; Page et al. 2002; Gaveau et al. 
2014; Lamentowicz et al. 2020 

Land-use change: 
clear-cutting, 
agriculture, forestry, 
pasture, peat mining, 
flooding 

.Peat loss (decay) 

.Peat flooding and burial 
Finland, Europe, 
Canada, Congo, 
Indonesia, south 
Africa, Poland, 
New Zealand, 
south Patagonia 

Last 200 yr Loss Synthesis work: Houghton 2012; Carlson et al. 2013; Leifeld et al. 
2018; Wijedasa et al. 2018; Byun et al. 2018 
Individual sites: Nieminen 2004; Rooney et al. 2012; Krüger et al. 
2016; Gałka et al. 2015, 2017b; Hooijer et al., 2012; Moore et al. 
2013; Miettinen et al. 2017; Schipper & McLeod, 2002; Balze et al. 
2004; Lamentowicz and Obremska 2010; Gabriel et al. 2017; 
Hansen et al. 2008; Lamentovicz et al. 2015; Słowiński et al. 2019; 
Kołaczek et al. 2018; Teodoru et al. 2012; Dargie et al. 2017; Henn 
et al. 2016; Grootjans et al. 2014    

Atmospheric pollution .Sphagnum changes Germany, 
Poland, Russia, 
south Patagonia 

Last 200 yr Unk. Individual sites: Gałka et al. 2019; De Vleeschouwer et al. 2014; 
Fialkiewicz-Koziel et al. 2016 

Nitrogen deposition .Peat loss (decay) 
.Rapid vertical accumulation 
.Vegetation change 

eastern Canada, 
western Canada, 
Sweden, UK, 
Europe, south 
Patagonia 

Last ~150 yr Gain/Loss Synthesis work: Turunen et al. 2004; Limpens et al. 2011; 
Kleinbecker et al. 2008 
Individual sites: Vitt et al. 2003; Gunnarsson et al. 2008; Wieder et 
al. 2019; Bubier et al. 2007; Larmola et al. 2013; Juutinen et al. 
2016; Pinsonneault et al. 2016; Bragazza et al. 2006; Kivimäki et 
al. 2013; Olid et al. 2014; Bragazza et al. 2012, Fritz et al. 2012 

Table A2.2: Anthropocene case studies.
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Table A2.3. Post-LGM case studies used for the map (Figure A2.1). 

 

 

 

 

Vector of change 

on the map 
Arrow # Region Key reference(s) 

Temperature 
(Early Holocene explosive 

peat growth) 

1 Alaska, USA Jones & Yu, 2010 
2 Pacific Canada Lacourse et al. 2019 
3 Scotland Ratcliffe et al. 2018; Swinnen et al. 2019 
4 Fennoscandia Weckström et al. 2010  
5 West Siberia, Russia Smith et al. 2004 
6 South Patagonia Yu et al. 2010; Mathijssen et al. 2019 
7 Congo Dargie et al. 2017 
8 Indonesia Page et al. 2004 

Moisture 
(Mid/late Holocene peat 

expansion) 

1 Alaska, USA Jones et al. 2012 

2 Hudson Bay Lowlands, 
Canada 

Glaser et al. 2004; Packalen et al. 2014; Packalen & 
Finkelstein 2014  

3 Fennoscandia Korhola et al. 2010; Weckstrom et al. 2010; Ruppel et 
al. 2013 

4 Central Europe Gałka et al. 2015 
5 China Xing et al. 2015 
6 Southeast Asia Rieley et al. 2008; Dommain et al. 2014 

Moisture 
(Mid/late Holocene fen-

bog shifts) 

1 Fennoscandia Väliranta et al. 2017 

2 South Patagonia Loisel & Yu, 2013; De Vleeschouwer et al. 2014 

Moisture 
(Late Holocene wetting & 

pool inception) 

1 Eastern Canada Foster et al. 1988; van Bellen et al. 2013; Garneau et 
al. 2018  

2 Fennoscandia Foster & Wright 1990 
Moisture 

(Early Holocene flooding) 1 Indonesia Dommain et al. 2011  

Moisture 
(Mid-Holocene droughts) 

1 Mid-continental USA Booth et al. 2005 
2 Amazon Swindles et al. 2018 

Atmospheric pollution 
(Tephra loading) 

1 South Patagonia Vanneste et al. 2016; Mansilla et al. 2018 
2 Colombia Liu et al. 2019 
3 Japan Hughes et al. 2013 
4 Kamchatka, Russia Klimaschewski et al. 2015 

Permafrost 
(Late Holocene & LIA 

aggradation) 

1 Northwestern Canada Vardy et al. 2000 

2 Western Canada Robinson & Moore 1999; Vitt et al. 2000; Pelletier et al. 
2017 

3 West-central Canada Kuhry 2008; Sannel & Kuhry, 2008 
4 Eastern Canada Lamarre et al. 2012 

5 Fennoscandia Oksanen 2006; Kokfelt et al. 2010; Kjellman et al. 
2018; Sannel et al. 2018  

6 European Russia Oksanen et al. 2001, 2003  
7 West Siberia  Beilman et al. 2009 

Fire 
(Early Holocene high 
frequency & severity) 

1 Western Canada Kuhry 1994; Camill et al. 2009 

2 South Patagonia Huber & Markgraf, 2003 
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Vector of change 

on the map 
Arrow # Region Reference(s) 

Permafrost 
(Degradation, thaw) 

1 Alaska, USA Jorgenson et al. 2001; O’Donnell et al. 2012 
2 Northwestern Canada Pelletier et al. 2017; Estop-Aragonès et al. 2018 
3 Western Canada Turetsky et al. 2000, 2002, 2007  
4 West-central Canada Camill et al. 2001; Camill 1999 
5 Northwestern Québec Payette et al. 2004; Lamarre et al. 2012  
6 Fennoscandia Sannel & Kuhry 2011; Swindles et al. 2015 
7 European Russia Sannel & Kuhry 2011 

Fire 
(Increased intensity, 

frequency) 

1 Alaska, USA Turetsky et al. 2011 
2 Western Canada Turetsky et al. 2004 
3 Eastern Canada Lavoie & Pellerin 2007 
4 Poland Lamentowicz et al. 2020 

5 Indonesia Page et al. 2002; van der Werf et al. 2010; Gaveau et 
al. 2014 

Land use 
(Deforestation, 

drainage) 

1 Western Canada Rooney et al. 2012 
2 California, USA Drexler et al. 2018 

3 Central Europe Lamentowicz et al. 2015; Gałka et al. 2015, 2017b; 
Słowiński et al. 2019 

4 Fennoscandia Nieminen 2004; Krüger et al. 2016 
5 Amazon Aragao et al. 2007; Wang et al. 2018 
6 South Patagonia Balze et al. 2004 
7 Congo Hansen et al. 2008 

8 Indonesia & Malaysia Hooijer et al., 2012; Wijedasa et al. 2018; Miettinen et 
al. 2017 

9 Indonesia Carlson et al. 2013; Moore et al. 2013 
10 New Zealand Schipper & McLeod 2002 

Temperature 
(Ecosystem state 

shifts) 

1 Alaska, USA Klein et al. 2013; Loisel & Yu 2013b; Gałka et al. 2018; 
Taylor et al. 2019  

2 Western Canada Magnan et al. 2018; van Bellen et al. 2018 
3 Fennoscandia Gałka et al. 2017a 

4 Finnish Lapland & 
European Russia Zhang et al. 2018 

5 Central Europe Lamentowicz et al. 2008, 2009; Gałka et al. 2015; 
Marcisz et al. 2015; Gałka et al. 2019 

6 South Patagonia Van Bellen et al. 2016 

Nitrogen deposition 

1 Western Canada Vitt et al. 2003; Wieder et al. 2016 

2 Eastern Canada Turunen et al. 2004; Bubier et al. 2007; Larmola et al. 
2013; Juutinen et al. 2016; Pinnsonault et al. 2016 

3 United Kingdom Kivimäki et al. 2013 
4 Fennoscandia Gunnarsson et al. 2008; Olid et al. 2014 
5 Northern Italy Bragazza et al. 2012 

Moisture 
(Reservoir flooding) 

1 Eastern Canada Teodoru et al. 2012 
2 Poland Lamentowicz and Obremska 2010 

 

Table A2.4. Anthropocene case studies used for the map (Figure A2.1). 
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Figure A2.1. The main agents of change responsible for increased (arrows pointing up) or diminished C 
gains (arrows pointing down) (a) since the post-LGM warming (21ka – 1750 CE), and (b) during the 

Anthropocene (1750 – 2020 CE). Upward arrows indicate C losses; downward arrows indicate C gains. 
LIA: Little Ice Age. Numbers refer to individual studies that document the case studies (Tables A2.3, 

A2.4). 
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Appendix 3: Key comments from survey respondents   
 

 

A. General comments 

01. We neglected/omitted mountain and alpine peatlands (both tropics and high latitudes) but they are 
very important from an ecosystem service perspective and may be at risk from particular threats 
 
02. We neglected/omitted southern hemisphere high-latitude and (sub-)Antarctic peatlands but they are 
very important from an ecosystem service perspective and may be at risk from particular threats 
 
03. Lack of globally-scaled data made this exercise difficult 
 
04. Evidence in the literature for the impact of particular drivers is conflicting, making quantitative 
predictions difficult.  
 
05. What are the main known unknowns? e.g., land-use has data gaps (e.g. Australasia, South America, 
Africa) 
 
06. Many experts do not feel able to, or think it is currently possible to, reliably quantify the role of each 
driver; these experts reported the relative trajectory of change (e.g. ‘will fire lead to more carbon loss in 
the future?’) and the relative significance of different factors 
 
07. We didn't provide a RCP scenario for near and far future 
 
08. Potential expert bias: ‘modern’ peatland people often believe that net carbon loss is the most likely 
future outcome whereas paleo people often believe the reverse 
 
09. Our approach does not integrate methane fluxes, only focuses on carbon stocks 
 
10. Personality may come out: some feel "overly careful" and "not confident" vs. “too confident” 
 
11. Interactions between the drivers of change is important and many people found it difficult to separate 
these, particularly temperature and moisture.  
 
 
B. Comments for high-latitude peatlands  

12. Interactions between the drivers of change are important (temperature and moisture, temperature and 
permafrost, moisture and fire, moisture and permafrost, fire and permafrost, fire and land-use, N 
deposition and atmospheric pollution) but not considered in the survey 
 
13. Temperature may be the key driver of northern peatland accumulation rates, but it’s impossible to 
tease it apart from the "necessary" moisture conditions 
 
14. Warmer conditions in the northern hemisphere lead to more C sequestration, as long as there is an 
adequate moisture supply. That said, many people see this trend change for the near and far future, such 
that warming is expected to lead to C loss because warmer temperatures eventually benefit 
decomposition over NPP 
 
15. People disagree about the future of moisture: projections suggest increases in precipitation the high 
latitudes, but droughts can still occur. Difficult to compare the relative impact of these competing effects. 
Critically low moisture levels might be reached at the regional scale during droughts, leading to C loss  
 
16. Sea level: we could model that 
 
17. Land-use: agriculture, sylviculture, peat extraction/mining, but also restoration and protection 
 



 26 

18. Pollution: includes CO2 fertilization, sulphur deposition, dust, tropospheric ozone. While mineral dust 
and carbon dioxide fertilization may enhance peatland biomass production, sulphur compounds have 
caused peat erosion and vegetation changes in coal-burning parts of the world. 
 
19. Not just absolute temperature, but also seasonality and growing season length, for example, are 
important drivers 
 
20. Moisture balance is intricately connected to, and feedbacks with, peatland hydrology, plant 
productivity and peat decomposition, which are also impacted by temperature 
 
21. Following permafrost thaw, if the meltwater drains away, enhanced peat decomposition is expected. A 
transient carbon sink may be found where conditions are wet enough to promote plant growth and peat 
burial 
 
22. A peat fire can be followed by rapid carbon recovery from increased plant production, though an 
increase in frequency and/or intensity could lead to deeper burns and harder recovery. 
 
 
C. Comments for tropical peatlands  

23. Poor peatland mapping 
 
24. High uncertainty in total carbon pool 
 
25. Sampling bias and under-representation of many tropical peatland regions in databases 
 
26. Climatic, cultural, and topographic settings are drastically different across the tropics (including 
tectonics – subsiding foreland basins, for example) 
 
27. Interactions between the drivers of change is important (temperature and land-use (drainage), 
temperature and moisture, moisture and land-use, moisture and fire (ENSO, but also drainage), moisture 
and sea level, land-use and fire, land-use and sea level) 
 
28. Temperature is probably not a limiting growth factor. Why does peat grow under warm temperatures 
anyway? Lower carbohydrates and higher aromatics than in high-latitude peats; anything else? 
 
29. Some papers say that moisture is the primary driver of the majority of lowland tropical peat growth. 
BUT others say that sea level is the major controlling driver of peat accumulation in lowland tropics 
(coastal/aquatic regions)! Sea level vs moisture: not sure which is the main driver based on responses. 
Rising sea level initiates peat growth but also kills shelf peat (inundation). Future sea level rise may 
accelerate peat carbon accumulation and initiate new peatlands, but also flood lowland sites (especially 
drained sites that are subsiding): no agreement here either! Also: saltwater intrusion in coastal peatlands 
 
30. Fire management and suppression have not been investigated in the tropics 
 
31. Will the need to conserve outweigh the pressure to develop? Also, what is happening in SE Asia might 
happen in Congo and the Amazon in the future... population growth could lead to drainage of these 
peatlands as well, unless protection schemes are developed based on lessons learned 
 
32. Not much scientific work done on nitrogen deposition and atmospheric pollution in tropical peats 
 
33. Haze and particulate matter from peat fires are very important research topics from a social, 
economic, and health perspective 
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Appendix 5: Peatland infographic without text and brief review of the main peatland agents of change. 
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1. Drivers of peatland carbon stock changes – a brief review   
 
Temperature. The primary driver for extra-tropical peatland carbon (C) accumulation over the Holocene, 
along with land availability and topographic settings. Peatlands have spread across vast landscapes 
following the Last Glacial Maximum (LGM)1 and may spread towards the poles under warming scenarios. 
As long as sufficient moisture conditions are maintained, warmer and longer growing seasons can 
contribute to increases in plant productivity and peat burial in many extra-tropical regions2-4, but to 
enhanced decomposition and carbon loss in the tropics5-6, where growing season length and temperature 
are not limiting factors for photosynthesis7.  
 
Moisture. Water saturation is a key control on oxygen availability in peats and on plant community 
composition, and thus an important determinant for CO2 and CH4 emissions and on net ecosystem C 
balance in both intact and drained peatlands8-10. Soil moisture excess is a necessary condition for long-
term peat development; surface wetness must remain sufficient to minimize aerobic respiration losses and 
provide conditions inhibiting the activity of phenol oxidase11. In the tropical and mid-latitude regions, water 
table depth is considered the main agent driving long-term peat accumulation12-14.  
 
Sea-level.  At the regional scale, sea-level rise may either lead to net C losses15 or net C gains16. For 
example, sea-level decline in the tropics17 and land uplift following deglaciation in the north18 contributed 
to peat expansion over the past 5000 years. Conversely, in the (sub-)tropics, sea-level rise can drive 
groundwater levels up regionally, which can allow coastal peatlands to expand and accrete at greater 
rates19-20. This process, which took place during the previous interglacial21 and other past warm climates, 
is likely to be most pronounced in the large coastal peatlands of the (sub-)tropics. While tectonic 
subsidence can lead to vast accumulations of lignite over millions of years22-23, its conjunction with rapid 
sea-level rise, rapid subsidence, or peat surface collapse due to water abstraction or land-use change can 
lead to peatland loss24-25. In general, sea-level rise has been suggested to be a threat for coastal 
peatlands26-27, as these systems have limited capacity to move inland because of topography or human 
development.  
 
Peat Fire. Around the world, the combustion of peat layers has led to direct losses of plant and peat C. 
Studies have shown that fire-derived emissions can be substantial, even exceeding biological emissions 
from peat decomposition in some years28. The highest emissions are observed from drained tropical 
peatlands in extreme dry years such as the 1997 El Niño (810-2570 TgC yr-1)29 and the 2015 fire season 
(380 Tg C yr-1)30 in Indonesia. However, as a result of drainage, peat fires are even observed in wet 
years31. Although peat C losses from northern peat fires are smaller (e.g., 5 TgC yr-1 from Alaskan 
wetlands)32, there is a need to consider wildfires in permafrost thaw dynamics due to their effects on soil 
temperature regime33. Peatland surface drying, both as a result of droughts and human activity, has been 
shown to increase the frequency and extent of peat fires34. Lastly, while peatlands tend to recover from 
fires, an increase in frequency or intensity could lead to deeper burns and hindered recovery35 as well as 
peat water repellency36. 
 
Land-use change. Widespread peatland conversion, drainage, and mining across the temperate and 
tropical regions has led to large C losses. A few examples include Indonesia, where approximately 
880,000 hectares of tropical peatlands had been converted to oil-palm plantations by 201037, and only 6% 
of pristine peat swamp forests in insular Southeast Asia remained intact by 2015. In Alberta’s oil sand 
region, at least 30,000 hectares of peatland habitat had been destroyed by open-pit mining by 201038. In 
Finland, approximately 4,500,000 hectares have been drained for forestry, peat extraction, and agriculture 
since World War II39. These land-use practices lead to immediate ecosystem damage, CO2 emissions40, 
DOC leaching41-42, and land subsidence43. While most peatland management practices result in 
decreased CH4 emissions due to drainage, peatland inundation or rewetting can lead to episodic CH4 
releases44-45.  
 
Permafrost. Across the northern high-latitude regions, increasing air temperatures and winter precipitation 
have been linked to a >50% reduction in palsa or peat plateau area since the late 1950s46-48, although this 
is variable by region49. In general, thermokarst landforms such as ponds or collapse-scar wetlands with 
saturated soils form when ice-rich peat thaws and collapses. These mainly anaerobic environments are 
characterized by high CH4 emissions50-52; mass-balance accounting for C stocks indicates as much as 25-
60% of “old” permafrost C is lost in the years to decades following thaw53-55. Over time, increased C 
sequestration and renewed peat accumulation occurs in drained thermokarst lake basins56-57 and 
collapse-scar wetlands, but it can take decades to centuries and sometimes millennia for collapse-scar 
wetlands to transition from having a positive (warming) to a negative (cooling) net radiative forcing58.  
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Nitrogen deposition. Increased emissions of nitrogen (N) through agricultural and industrial activities have 
augmented the rate of atmospheric deposition of ammonium and nitrate59 and will continue unless 
emission controls are enforced60. The structure and function of peatlands are now threatened by 
increased N availability and atmospheric phosphorus (P) deposition59. It was shown for example that the 
Sphagnum moss cover dies off after a few years of sustained N loading, through a combination of direct N 
action and increased shrub canopy coverage61-63, and that changes in climate can exacerbate these 
negative effects64. Changes in microbial communities and litter quality associated with N deposition can 
also contribute to increased peat decomposition65-66, along with the lowering of the peatland surface due 
to faster decomposition67 causing a rise in the water table and increased CH4 emission68. Conversely, a 
study reported C gain with modest N deposition in a Swedish peatland, driven by a greater increase in 
plant production than in decomposition69, illustrating differences, and perhaps a threshold response, in C 
balance response to N deposition.  
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