57 research outputs found

    Challenges in implementing cultural adaptations of digital health interventions

    Get PDF
    Differences in the access and use of digital health interventions are driven by culture, in addition to economic and physical factors. To avoid the systematic exclusion of traditionally underserved cultural groups, creating inclusive digital health interventions is essential. One way to achieve this is through cultural adaptations, defined as the systematic modification of an existing intervention that aligns with a target audience's cultural norms, beliefs, and values. In theory, cultural adaptations can potentially increase the reach and engagement of digital health interventions. However, the evidence of whether and how that is achieved is limited. Justifying, planning, and implementing an adaptation comes with various challenges and takes time and money. This perspective provides a critical overview of the field's current state and emphasizes the need for technology-specific frameworks that address when and how to culturally adapt digital health interventions

    Handoffs and Transitions in Critical Care (HATRICC): Protocol for a Mixed Methods Study of Operating Room to Intensive Care Unit Handoffs

    Get PDF
    Background: Operating room to intensive care unit handoffs are high-risk events for critically ill patients. Studies in selected patient populations show that standardizing operating room to intensive care unit handoffs improves information exchange and decreases errors. To adapt these findings to mixed surgical populations, we propose to study the implementation of a standardized operating room to intensive care unit handoff process in two intensive care units currently without an existing standard process. Methods/Design: The Handoffs and Transitions in Critical Care (HATRICC) study is a hybrid effectiveness- implementation trial of operating room to intensive care unit handoffs. We will use mixed methods to conduct a needs assessment of the current handoff process, adapt published handoff processes, and implement a new standardized handoff process in two academic intensive care units. Needs assessment: We will use non-participant observation to observe the current handoff process. Focus groups, interviews, and surveys of clinicians will elicit participants’ impressions about the current process. Adaptation and implementation: We will adapt published standardized handoff processes using the needs assessment findings. We will use small group simulation to test the new process’ feasibility. After simulation, we will incorporate the new handoff process into the clinical work of all providers in the study units. Evaluation: Using the same methods employed in the needs assessment phase, we will evaluate use of the new handoff process. Data analysis: The primary effectiveness outcome is the number of information omissions per handoff episode as compared to the pre-intervention period. Additional intervention outcomes include patient intensive care unit length of stay and intensive care unit mortality. The primary implementation outcome is acceptability of the new process. Additional implementation outcomes include feasibility, fidelity and sustainability. Discussion: The HATRICC study will examine the effectiveness and implementation of a standardized operating room to intensive care unit handoff process. Findings from this study have the potential to improve healthcare communication and outcomes for critically ill patients. Trial registration: ClinicalTrials.gov identifier: NCT02267174. Date of registration October 16, 2014

    Exploring Uncoupling Proteins and Antioxidant Mechanisms under Acute Cold Exposure in Brains of Fish

    Get PDF
    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure

    Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling

    Get PDF
    Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy1,2,3. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations2. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes1,3. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1)1,3,4. Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.This work was supported by an Alex's Lemonade Stand Young Investigator Award (S.C.M.), The CIHR Banting Fellowship (S.C.M.), The Cancer Prevention Research Institute of Texas (S.C.M., RR170023), Sibylle Assmus Award for Neurooncology (K.W.P.), the DKFZ-MOST (Ministry of Science, Technology & Space, Israel) program in cancer research (H.W.), James S. McDonnell Foundation (J.N.R.) and NIH grants: CA154130 (J.N.R.), R01 CA169117 (J.N.R.), R01 CA171652 (J.N.R.), R01 NS087913 (J.N.R.) and R01 NS089272 (J.N.R.). R.C.G. is supported by NIH grants T32GM00725 and F30CA217065. M.D.T. is supported by The Garron Family Chair in Childhood Cancer Research, and grants from the Pediatric Brain Tumour Foundation, Grand Challenge Award from CureSearch for Children’s Cancer, the National Institutes of Health (R01CA148699, R01CA159859), The Terry Fox Research Institute and Brainchild. M.D.T. is also supported by a Stand Up To Cancer St. Baldrick’s Pediatric Dream Team Translational Research Grant (SU2C-AACR-DT1113)

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore