446 research outputs found

    Modelling surface magnetic field evolution on AB Doradus due to diffusion and surface differential rotation

    Get PDF
    From Zeeman Doppler images of the young, rapidly-rotating K0 dwarf AB Doradus, we have created a potential approximation to the observed radial magnetic field and have evolved it over 30 days due to the observed surface differential rotation, meridional flow and various diffusion rates. Assuming that the dark polar cap seen in Doppler images of this star is caused by the presence of a unipolar field, we have shown that the observed differential rotation will shear this field to produce the observed high-latitude band of unidirectional azimuthal field. By cross-correlating the evolved fields each day with the initial field we have followed the decay with time of the cross-correlation function. Over 30 days it decays by only 10 percent. This contrasts with the results of Barnes et al (1998), who show that on this timescale the spot distribution of He699 is uncorrelated. We propose that this is due to the effects of flux emergence changing the spot distributions.Comment: 7 pages, 7 figures, accepted for publication in MNRA

    Spin Structure of the Pion in a Light-Cone Representation

    Full text link
    The spin structure of the pion is discussed by transforming the wave function for the pion in the naive quark model into a light-cone representation. It is shown that there are higher helicity (λ1+λ2=±1\lambda_{1}+\lambda_{2}=\pm1) states in the full light-cone wave function for the pion besides the ordinary helicity (λ1+λ2=0\lambda_{1}+\lambda_{2}=0) component wave functions as a consequence from the Melosh rotation relating spin states in light-front dynamics and those in instant-form dynamics. Some low energy properties of the pion, such as the electromagnetic form factor, the charged mean square radius, and the weak decay constant, could be interrelated in this representation with reasonable parameters.Comment: 15 Latex pages, 2 figures upon reques

    Recent Progress at LBNL on Characterization of Laser WakefieldAccelerated Electron Bunches using Coherent Transition Radiation

    Get PDF
    At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate an intense burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunchlength diagnostics [4], a key to continuing rapid advance in LWFA technology. Experimental bunch length characterization for two different energy regimes through bolometric analysis and electro-optic (EO) sampling are presented. Measurements demonstrate both shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition, this method of CTR generation provides THz pulses of very high peak power suitable for applications. Recent results reveal LWFA to be a promising intense ultrafast THz source

    The global distribution and burden of dengue

    Get PDF
    Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes1. For some patients dengue is a life-threatening illness2. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread3. The contemporary worldwide distribution of the risk of dengue virus infection4 and its public health burden are poorly known2,5. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of clinical or sub-clinical severity). This infection total is more than three times the dengue burden estimate of the World Health Organization2. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help guide improvements in disease control strategies using vaccine, drug and vector control methods and in their economic evaluation. [285

    Stable Electron Beams With Low Absolute Energy Spread From a LaserWakefield Accelerator With Plasma Density Ramp Controlled Injection

    Get PDF
    Laser wakefield accelerators produce accelerating gradientsup to hundreds of GeV/m, and recently demonstrated 1-10 MeV energy spreadat energies up to 1 GeV using electrons self-trapped from the plasma.Controlled injection and staging may further improve beam quality bycircumventing tradeoffs between energy, stability, and energyspread/emittance. We present experiments demonstrating production of astable electron beam near 1 MeV with hundred-keV level energy spread andcentral energy stability by using the plasma density profile to controlselfinjection, and supporting simulations. Simulations indicate that suchbeams can be post accelerated to high energies,potentially reducingmomentum spread in laser acceleratorsby 100-fold or more

    The clean conscience at work: Emotions, intuitions and morality

    Get PDF
    How do people decide what is right and wrong, and to what extent are their actions guided by such moral considerations? Inspired by philosophical traditions, early approaches to morality focused on rationality, and assumed that people arrive at moral standards by logical thought. More recently, however, psychologists have explored the influence of emotions and intuitions on morality, and evidence has been accumulating that moral decisions and behaviors are far from rational, but instead, are guided by intuitions and situational considerations. For example, seemingly irrelevant concerns such as keeping one’s mind and spirit clean and pure can change people’s moral judgment. Emotions can also influence behavior, and positive, uplifting emotions such as elevation and gratitude can be harnessed to produce beneficial outcomes for individuals and organizations alike. Furthermore, people appear to aspire to an equilibrium of moral self-worth, and engage in more or less ethical behavior depending on their currently perceived moral integrity. Thus, morality and ethical behavior is less likely to reside in the person than in the context, and thus, for the study of spirituality, it might be beneficial to focus on people’s situational constraints in the workplace rather than their stable dispositions. Further, because of their potential to inspire positive action, organizations might aim to make positive moral emotions, such as gratitude, elevation, and awe part of everyday work contexts. Overall, in organizations and the workplace, the goal shifts from trying to identify the moral individual to providing the contextual conditions that appeal to spiritual concerns in order to foster moral behavior.</jats:p

    Automated analysis for detecting beams in laser wakefield simulations

    Get PDF
    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

    In vivo and in vitro synthesis of CM-proteins (A-hordeins) from barley (Hordeum vulgare L.)

    Get PDF
    CM-proteins from barley endosperm (CMa, CMb, CMc, CMd), which are the main components of the A-hordein fraction, are synthesized most actively 10 to 30 d after anthesis (maximum at 15–20 d). They are synthesized by membranebound polysomes as precursors of higher apparent molecular weight (13,000–21,000) than the mature proteins (12,000–16,000). The largest in vitro product (21,000) is the putative precursor of protein CMd (16,000), as it is selected with anti-CMd monospecific IgG's, and is coded by an mRNA of greater sedimentation coefficient (9 S) than those encoding the other three proteins (7.5 S). CM-proteins always appear in the soluble fraction, following different homogenization and subcellular fractionation procedures, indicating that these proteins are transferred to the soluble fraction after processing

    Reframing the university as an emergent organization: implications for strategic management and leadership in higher education

    Get PDF
    For the most part, the organisational forms that are currently being adopted by higher education institutions are grounded in the traditional corporate models of organisation that take a rational approach to organisational design and change management. Underlying this account is an assumption of organisational autonomy and the capacity of designated leaders to direct change processes to better align their institutions with societal demands or goals. However, a case is now being made for the consideration of alternative organisational theories or models that offer a different perception on the sources and patterns of organisational change in higher education. These theories perceive organisations more as emergent entities in which change is continuous, often unpredictable and arising mainly from local interactions. The paper surveys the implications that acceptance of the alternative paradigm might have for strategising and change leadership in higher education institutions. It suggests that the accommodation of these alterative paradigms of institutional development in higher education may itself be an emergent process and considers how future research and policy formulation relating to strategic management and leadership might facilitate positive outcomes in that process
    corecore