607 research outputs found

    A physiological signature of sound meaning in dementia.

    Get PDF
    The meaning of sensory objects is often behaviourally and biologically salient and decoding of semantic salience is potentially vulnerable in dementia. However, it remains unclear how sensory semantic processing is linked to physiological mechanisms for coding object salience and how that linkage is affected by neurodegenerative diseases. Here we addressed this issue using the paradigm of complex sounds. We used pupillometry to compare physiological responses to real versus synthetic nonverbal sounds in patients with canonical dementia syndromes (behavioural variant frontotemporal dementia - bvFTD, semantic dementia - SD; progressive nonfluent aphasia - PNFA; typical Alzheimer's disease - AD) relative to healthy older individuals. Nonverbal auditory semantic competence was assessed using a novel within-modality sound classification task and neuroanatomical associations of pupillary responses were assessed using voxel-based morphometry (VBM) of patients' brain MR images. After taking affective stimulus factors into account, patients with SD and AD showed significantly increased pupil responses to real versus synthetic sounds relative to healthy controls. The bvFTD, SD and AD groups had a nonverbal auditory semantic deficit relative to healthy controls and nonverbal auditory semantic performance was inversely correlated with the magnitude of the enhanced pupil response to real versus synthetic sounds across the patient cohort. A region of interest analysis demonstrated neuroanatomical associations of overall pupil reactivity and differential pupil reactivity to sound semantic content in superior colliculus and left anterior temporal cortex respectively. Our findings suggest that autonomic coding of auditory semantic ambiguity in the setting of a damaged semantic system may constitute a novel physiological signature of neurodegenerative diseases

    Bovine pericardium retail preserved in glutaraldehyde and used as a vascular patch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study we evaluated the performance of bovine pericardium preserved in glutaraldehyde used as a vascular patch.</p> <p>Methods</p> <p>Fourteen young pigs, six females and eight males, weighting 10.3 - 18.4 kg were used in our study. We implanted three remnants in each pig, two in the abdominal aorta and one was juxtaposed to the peritoneum. The smooth face (SF) and rough face (RF) of each remnant were implanted turned to the vessel inner portion and one remnant was juxtaposed to the peritoneum. The animals were sacrificed in 4.5 - 8 months after surgery (75 - 109 kg). The remnants were assessed for aorta wall, fibroses formation in inner apposition and calcification related to the face turned to the vessel inner portion.</p> <p>Results</p> <p>The rough face showed a lower dilatation level compared to the face implanted in adjacent aorta. There was no difference between intensity and/or incidence of graft calcification when the superficies were compared. The bovine pericardium preserved in glutaraldehyde did not show alterations in its structure when implanted with different faces turned to the inner portion of vessel.</p> <p>Conclusion</p> <p>When turned to the inner portion of the vessel, the rough face of the remnant presented a lower dilatation in relation to the adjacent aorta and a better quality of endothelium layer and did not show a difference between intensity and/or incidence of graft calcification.</p

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)

    Get PDF
    Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years) to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH) to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i) plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy), (ii) intergenomic translocations and (iii) variable sizes and expression patterns of individual ribosomal DNA (rDNA) loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0) and S(1) generations) polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years old) polyploid species and synthetic polyploids that resemble natural species. The data also provide insight into the mechanisms that perturb inheritance patterns of genetic markers in synthetic polyploids and populations of young natural polyploid species

    Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review

    Get PDF
    The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings
    corecore