667 research outputs found

    Flavour Universal Dynamical Electroweak Symmetry Breaking

    Get PDF
    The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavour to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400-700)~GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavour symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolour model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolour model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig

    Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics

    Full text link
    When Lenz proposed a simple model for phase transitions in magnetism, he couldn't have imagined that the "Ising model" was to become a jewel in field of equilibrium statistical mechanics. Its role spans the spectrum, from a good pedagogical example to a universality class in critical phenomena. A quarter century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing a seemingly trivial modification to the Ising lattice gas, they took it into the vast realms of non-equilibrium statistical mechanics. An abundant variety of unexpected behavior emerged and caught many of us by surprise. We present a brief review of some of the new insights garnered and some of the outstanding puzzles, as well as speculate on the model's role in the future of non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting, Rutgers, NJ (December, 2008

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    An Extended Technicolor Model With QCD-like Symmetry Breaking

    Get PDF
    We present a one-doublet extended technicolor model, with all fermions in fundamental representations. The bare lagrangian has no explicit mass terms but generates masses through gauge symmetry breaking by purely QCD-like dynamics. The model generates three families of quarks and leptons and can accommodate the observed third family mass spectrum (including a large top mass and light neutrinos). In addition, we show how the model may be extended to incorporate a top color driven top mass without the need for a strong U(1) interaction. We discuss the compatiblity of the model with experimental constraints and its possible predicitive power with respect to first and second family masses.Comment: 25 pages, latex, 7 figure

    Trends in Bacterial Vaginosis Prevalence in a Cohort of U.S. Women with and at Risk for HIV

    Get PDF
    Background: Women with human immunodeficiency virus (HIV) often have bacterial vaginosis (BV). The goal of this analysis was to assess how BV prevalence changed over time and across U.S. regions in enrollment cohorts of the Women's Interagency HIV Study. Methods: In a multisite study, BV was diagnosed retrospectively when pH and two of three other Amsel criteria were met. Prevalence was determined across four recruitment waves: 1994-5, 2001-2, 2011-2, and 2013-5. Generalized estimating equation multivariable logistic regression models assessed changes in visit prevalence across waves after controlling for HIV disease severity and other risks. Results: Among 4,790 women (3,539 with HIV and 1,251 without HIV), BV was diagnosed at 7,870 (12%) of 64,444 visits. Baseline prevalence across enrollment waves was 15.0%-19.2%, but declined in all cohorts, with prevalence in the initial cohort falling to 3.9% in the 1994-5 cohort after up to 21 years of continuous observation. Prevalence varied within U.S. regions. HIV status was not associated with BV. Conclusion: BV prevalence decreased with time in study. Prevalence varied across sites, but was not uniformly increased or decreased in any U.S. region. Clinical Trials.gov identifier: NCT00000797

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore