40 research outputs found

    Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder

    Get PDF
    IMPORTANCE Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63 000 participants (including MDD cases)

    Meta-analysis of Genome-Wide Association Studies for Extraversion : Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion.Peer reviewe

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Overexpression of the Cytokine BAFF and Autoimmunity Risk

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS\textbf{METHODS}: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS\textbf{RESULTS}: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS\textbf{CONCLUSIONS}: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).Supported by grants (2011/R/13 and 2015/R/09, to Dr. Cucca) from the Italian Foundation for Multiple Sclerosis; contracts (N01-AG-1-2109 and HHSN271201100005C, to Dr. Cucca) from the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH); a grant (FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità,” to Dr. Cucca) from the Italian Ministry of Economy and Finance; a grant (633964, to Dr. Cucca) from the Horizon 2020 Research and Innovation Program of the European Union; a grant (U1301.2015/AI.1157.BE Prat. 2015-1651, to Dr. Cucca) from Fondazione di Sardegna; grants (“Centro per la ricerca di nuovi farmaci per malattie rare, trascurate e della povertà” and “Progetto collezione di composti chimici ed attività di screening,” to Dr. Cucca) from Ministero dell’Istruzione, dell’Università e della Ricerca; grants (HG005581, HG005552, HG006513, and HG007022, to Dr. Abecasis) from the National Human Genome Research Institute; a grant (9-2011-253, to Dr. Todd) from JDRF; a grant (091157, to Dr. Todd) from the Wellcome Trust; a grant (to Dr. Todd) from the National Institute for Health Research (NIHR); and the NIHR Cambridge Biomedical Research Centre. Dr. Idda was a recipient of a Master and Back fellowship from the Autonomous Region of Sardinia

    Population- and individual-specific regulatory variation in Sardinia

    Get PDF
    Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.M.P. is supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 633964 (ImmunoAgeing). Z.Z. is supported by the National Science Foundation (NSF) GRFP (DGE- 114747) and by the Stanford Center for Computational, Evolutionary, and Human Genomics (CEHG). Z.Z., J.R.D., and G.T.H. also acknowledge support from the Stanford Genome Training Program (SGTP; NIH/NHGRI T32HG000044). J.R.D. is supported by the Stanford Graduate Fellowship. K.R.K. is supported by Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEQ) Fellowship 32 CFR 168a. S.J.S. is supported by the NIHR Cambridge Biomedical Research Centre. The SardiNIA project is supported in part by the intramural program of the National Institute on Aging through contract HHSN271201100005C to the Consiglio Nazionale delle Ricerche of Italy. The RNA sequencing was supported by the PB05 InterOmics MIUR Flagship grant; by the FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità” grant; and by Sardinian Autonomous Region (L.R. no. 7/2009) grant cRP3-154 to F. Cucca, who is also supported by the Italian Foundation for Multiple Sclerosis (FISM 2015/R/09) and by the Fondazione di Sardegna (ex Fondazione Banco di Sardegna, Prot. U1301.2015/AI.1157.BE Prat. 2015-1651). S.B.M. is supported by the US National Institutes of Health through R01HG008150, R01MH101814, U01HG007436, and U01HG009080. All of the authors would like to thank the CRS4 and the SCGPM for the computational infrastructure supporting this project

    Increase in expression of the GABA<sub>A</sub> receptor alpha<sub>4</sub> subunit gene induced by withdrawal of, but not by long-term treatment with, benzodiazepine full or partial agonists

    No full text
    The effects of long-term exposure to, and subsequent withdrawal of, diazepam or imidazenil (full and partial agonists of the benzodiazepine receptor, respectively) on the abundance of GABAA receptor subunit mRNAs and peptides were investigated in rat cerebellar granule cells in culture. Exposure of cells to 10 μM diazepam for 5 days significantly reduced the amounts of α4 and γ2 subunit mRNAs, and had no effect on the amount of α1 mRNA. These effects were accompanied by a decrease in the levels of α1 and γ2 protein and by a reduction in the efficacy of diazepam with regard to potentiation of GABA-evoked Cl- current. Similar long-term treatment with 10 M imidazenil significantly reduced the abundance of only the γ2S subunit mRNA and had no effect on GABAA receptor function. Withdrawal of diazepam or imidazenil induced a marked increase in the amount of α4 mRNA; withdrawal of imidazenil also reduced the amounts of α1 and γ2 mRNAs. In addition, withdrawal of diazepam or imidazenil was associated with a reduced ability of diazepam to potentiate GABAA action. These data give new insights into the different molecular events related to GABAA receptor gene expression and function produced by chronic treatment and withdrawal of benzodiazepines with full or partial agonist properties
    corecore