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ABSTRACT 
Genetic studies of complex traits have mainly identified associations with non-coding variants. To further 
determine the contribution of regulatory variation, we combined whole genome and transcriptome data for 624 
individuals from Sardinia in order to identify common and rare variants that influence gene expression and 
splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci 
(sQTLs), including 619 novel QTLs. We identified high-frequency QTLs and evidence of selection near genes 
involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of 
Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z-score of 2.97), 
averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new 
approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into 
the effects of regulatory variants and their relationship to population history and individual genetic risk. 
 
INTRODUCTION 
Human migration and rapid population expansion have led to an abundance of population and individual-specific 
genetic variation1-5. Within protein-coding regions of the genome, multiple studies have identified numerous rare 
loss-of-function alleles6-11 that affect monogenic disorders and, to a lesser extent and especially in founder 
populations, common diseases and complex traits12-14. Most of the variants associated with complex traits are 
found outside protein-coding regions, however, and their functional consequences remain elusive. Large studies 
of gene expression have greatly advanced our ability to identify functional variation in non-coding regions of the 
genome15-17, and many of these variants have been connected to common genetic diseases18,19. However, few 
studies to date have had access to whole genome sequencing data, family relationships, and auxiliary complex 
trait data from research participants. Such data has the potential to empower the assessment of population and 
individual-specific consequences of regulatory variants. 
 
To overcome this, we sequenced RNA isolated from the white blood cells of 624 individuals from the founder 
population of Sardinia. The Sardinian population has several advantages: their DNA includes the bulk of 
mainland European DNA variation, but due to a period of relative isolation for >10,000 years, many alleles have 
been added, and many old and novel variants have reached dramatically higher frequencies which should 
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improve power to detect associations between those variants and traits such as gene expression20-22. In addition, 
the SardiNIA study cohort has been extensively genotyped and phenotyped and consists of both unrelated and 
related individuals23. By combining RNA-seq data with whole genome sequencing data, we discovered 
expression and splicing quantitative trait loci (e/sQTLs) that are specific to the isolated Sardinian population. As 
this is the first e/sQTL study to integrate both whole genomes and transcriptomes from multiple families, we 
developed a framework that leverages these family relationships in order to identify large-effect rare regulatory 
variants. We identified extreme gene expression outliers that segregate within these families and investigate the 
distribution and associated functional annotations of putatively causal rare variants as well as their influence on 
individual disease risk. This approach enhances ongoing studies of loss-of-function variants by demonstrating a 
new approach to identifying and studying large-effect alleles. 
 
RESULTS 
Expression and splicing quantitative trait discovery in Sardinia 
The 624 participants, all from four towns in the Lanusei Valley in the Ogliastra region of Sardinia, were enrolled 
from a cohort of 6,921 in the SardiNIA longitudinal study of aging24. The entire SardiNIA cohort was genotyped 
using the Cardio-MetaboChip, ImmunoChip, exomeChip, and OmniExpress arrays. A subset of 2,120 Sardinians 
were additionally whole-genome sequenced at low coverage (average four-fold), producing an integrated map 
of ~15 million SNPs after imputation. This cohort and imputation pipeline has been previously described20,23,25. 
For RNA, we sequenced a median of ~59 million 51 bp paired-end reads per participant (over 36 billion reads in 
total). After quantification and quality control, 15,243 and 12,603 genes were sufficiently expressed for eQTL 
and sQTL analyses, respectively (Table 1). To account for confounding factors that can reduce power to discover 
cis-QTLs, we performed hidden factor correction with PEER26. We were able to identify and remove factors 
correlated with gender, age, various blood cell counts, and sequencing (Supplementary Figure 1, Supplementary 
Table 1). 
 
To discover eQTLs, we tested the association of genotype with expression level for all variants within ±1 Mb of 
a target gene’s transcription start site (TSS) for all individuals with genetic data in the integrated map (n = 606). 
At a false discovery rate (FDR) of 5%, we identified eQTLs for the majority of tested genes (Table 1). We then 
used a forward-stepwise regression approach to characterize the number of independent eQTLs per gene (see 
Methods). We found that approximately half of all protein-coding and lncRNA transcripts were influenced by at 
least two independent eQTLs; miRNAs, however, were mostly associated with a single eQTL (Table 2). At the 
extreme, we found a single protein-coding gene, ITGB1BP1, affected by 14 independent eQTLs. ITGB1BP1 
encodes an integrin binding protein that is implicated in upstream regulation of immune-critical TNF/NF-kB 
transcriptional regulation. We also identified a lncRNA of unknown function, NBPF1, that was affected by 11 
independent eQTLs (Supplementary Table 2). In total, we mapped at least one eQTL for 73% of tested genes, 
corresponding to 11,167 primary eQTLs. Our forward-stepwise regression analysis identified an additional 
10,016 secondary eQTLs for a total of 21,183 eQTLs (Table 2). We observed that both primary and secondary 
QTLs were enriched in diverse functional annotations (Supplementary Figure 2; Supplementary Tables 3-4). 
 
To discover sQTLs, we tested the association of genotype with the ratio of known transcript abundances 
calculated using Cufflinks27. At an FDR of 5%, we observed significant sQTLs for nearly half of the protein-coding 
genes and lncRNAs we tested. In total, this is over a thousand more sQTLs than previously reported15,17. In 
comparison to eQTLs, we found that protein-coding genes and lncRNAs were less likely to have multiple 
independent sQTLs (Table 2); however, we found five protein-coding genes that were influenced by as many as 
seven independent sQTLs (Supplementary Table 5). Notably, two of these genes affect transcription and splicing 
itself, and are expected to impact the immune system. These genes include: POLR2J2, which encodes one of 
two nearly identical polymerase II subunit genes known to produce alternative transcripts; and SMN1, whose 
product functions in the assembly of the spliceosome. The other three sQTL genes are directly related to immune 
function: the non-classical class I heavy chain paralog HLA-G; the class I heavy chain receptor HLA-C; and 
ITGB1BP1. The ITGB1BP1 gene, which has 8 exons that extend over 16 kb and are spliced into 21 isoforms, 
had extreme numbers of both independent eQTLs and sQTLs, suggesting that it is a large mutational target for 
modulators of expression. While less pervasive than eQTLs, we mapped at least one sQTL for 41% of tested 
genes, corresponding to 5,120 primary sQTLs. Our forward-stepwise regression analysis identified an additional 
1,648 secondary sQTLs for a total of 6,768 sQTLs (Table 2). 
We compared our forward-stepwise regression approach to an alternative method implemented in the MLMM 
software package28 that uses a stepwise mixed-model regression with forward inclusion and backward 



elimination in order to identify independent associations. Both approaches resulted in a similar number of 
independent eQTL associations (Supplementary Table 6) and sQTL associations (Supplementary Table 7) that 
were largely consistent with our original findings (see Supplementary Note). Furthermore, we performed 
simulations to assess the impact of statistical noise and missing SNPs on our independent association analyses. 
We ran our pipeline on simulated expression traits where a single, randomly selected SNP in the ±1 Mb region 
of each gene explained 25% of the trait’s variance (we did this for each gene where at least one eQTL was found 
in the original analysis). Only a small fraction of these simulations resulted in multiple independent associations 
compared to the actual analysis (Supplementary Table 8). We repeated this simulation a second time but 
excluded the randomly chosen causal SNP from the association-mapping phase. While we observed more 
independent associations relative to the first analysis (Supplementary Table 9), the similarity between the results 
of these simulations and the consistency observed between our pipeline and MLMM suggest our approach is 
identifying independent associations and is robust to statistical noise and residual LD blocks near these genes. 
 
Comparison of Sardinia and European eQTLs identifies novel functional and trait-associated variants 
We next measured the replication of Sardinian QTLs with European QTLs found in LCLs (GEUVADIS15) and 
whole blood (Depression Genes and Networks17; DGN). For Sardinian eQTLs that were tested in each study, 
the replication rate was 92% in DGN and 72% in GEUVADIS, reflecting the high-degree of sharing of common 
European alleles within Sardinia (Supplementary Table 10). For sQTLs, the replication rate was 72% in DGN 
and 76% in GEUVADIS. Additionally, we tested eQTLs and sQTLs found in either DGN or GEUVADIS for 
replication in the Sardinia cohort and found that between 89-92% of eQTLs and 70-97% of sQTLs replicated 
(Supplementary Table 11). Replication could not be tested for 2,568 eQTLs and 1,152 sQTLs found in Sardinia 
because the SNPs were either absent in Europe or only present at a minor allele frequency below 1%. Of these 
QTLs, 437 eQTLs and 182 sQTLs were novel in Sardinia when compared to the 1000 Genomes, dbSNP, UK10K, 
and ExAC databases, representing new and/or previously uncaptured functional variation. 
 
We first observed that novel eQTLs were depleted from known disease genes (Supplementary Figure 3). To 
determine if these novel eQTLs were associated with traits measured in Sardinia, we tested all 437 novel eQTL 
variants for associations with 15 blood cell measurements in the whole SardiNIA cohort (N ≈ 6,000; 

Supplementary Table 12). We identified 5 associations (5 traits and 4 variants, in total) that were significant after 
correcting for multiple testing (p-value < 8.8 x 10-6). For each association, we then retested the trait association 
for all variants within ±4 Mb of the target gene to identify the subset of loci where both the Sardinia-specific eQTL 
variant and the top trait-associated variant within this region were in high LD (r2 > 0.8). We identified a Sardinia-
specific eQTL for ARHGDIB that was also linked to the top trait-associated variant for neutrophil percentage, 
which is also Sardinia-specific (Supplementary Figure 4; top neutrophil percentage variant 
chr12:g.14190223T>C, p-value = 3.8 x 10-6; top eQTL, chr12:g.15553026G>T p-value = 7.69 x 10-6, r2 = 0.86). 
We further performed an eQTL/trait colocalization analysis with eCAVIAR29 and observed strong local 
colocalization between the ARHGDIB eQTL and both neutrophil and lymphocyte percentages (Supplementary 
Figure 5). Within this locus, only 3 of 14 variants that passed our LD filter have been previously reported outside 
of Sardinia (allele frequencies in Europe below 0.002). Of note, one of these variants (chr12:g.15095546G>C, 
p-value = 3.85 x 10-6, r2 with top neutrophil signal = 0.84) is a nonsense mutation that had been observed only 
once in the ExAC database but has a frequency >1% in Sardinia, with the direction of effect on expression 
consistent with nonsense-mediated decay. ARHGDIB presents a biologically plausible target for this association 
as it is a multi-function protein with a central role in inhibition of cell migration, and ARHGDIB-/- mice show 
changes in lymphocyte expansion and survival in culture30.  
 
Sardinia eQTLs exhibit founder population effects and evidence of selection 
As genetic analyses in founder populations like Sardinia are expected to have increased statistical power based 
on relatively low genetic heterogeneity and shared environment21, we compared the observed impact of 
Sardinian eQTLs to European eQTLs. Using an identical pipeline and controlling for various differences in study 
parameters, we regenerated European eQTLs from the DGN and GEUVADIS studies (see Methods). When 
comparing eQTLs between these studies and Sardinia, we observed increased correlation between expression 
and genotype for Sardinian eQTLs (Figure 1A). This could reflect founder population effects or reduced technical 
noise in our study. As allele-specific expression signals have been demonstrated to be more robust to technical 
noise, we also compared Sardinian allele-specific expression QTLs (aseQTLs) to European aseQTLs31. We 
observed an increased correlation of genotype and allelic expression for Sardinia aseQTLs, similar to the trend 
we observed for eQTLs and consistent with a founder population effect (Figure 1B).  



 
To identify eQTLs where founder effects, genetic drift, or selective pressures have significantly influenced the 
prevalence of these alleles in Sardinia, we first compared the Sardinian allele frequencies of eQTLs and sQTLs 
with the corresponding European allele frequency reported by the 1000 Genomes Project5. We found that 11% 
of significant eQTLs were differentiated at an allele frequency greater than 10% (Figure 2A). In addition, we 
observed longer tracts of linkage disequilibrium (LD) decay in Sardinians conditioned on the extent of allelic 
differentiation for eQTLs versus non-eQTLs (Figure 2B). Furthermore, ten of the top 1% of differentiated eQTLs 
showed evidence of hard selective sweeps (integrated haplotype scores |iHS| > 2.5), consistent with a proportion 
of these eQTLs having undergone recent positive selection32,33 (Supplementary Figure 6, Supplementary Table 
13). 
 
Highly differentiated eQTLs are enriched for malaria and multiple sclerosis genes 
We next tested whether two epidemiological factors present in Sardinia were reflected among highly 
differentiated eQTLs. Until the mid-twentieth century, the Sardinian population suffered high mortality rates due 
to malaria34,35, and continues to have a higher prevalence of multiple sclerosis (MS) relative to other Caucasian 
populations in the Mediterranean basin36,37. Indeed, we identified a significant enrichment for known malarial 
resistance genes (p-value = 0.0015) and genes associated with MS (EBI/NHGRI GWAS Catalog nominal p-
value = 1.84 x 10-5 and ImmunoBase nominal p-value = 1.17 x 10-8) among the top 1% of differentiated eQTLs 

(mean allele frequency difference of ~17%) (Figure 2C-D, Supplementary Table 14). MS had the highest 
enrichment among 354 traits tested from the EBI/NHGRI GWAS catalog and among 19 traits tested from the 
ImmunoBase catalog (Figure 2D, Supplementary Figure 7). Furthermore, GWAS hits for MS show evidence for 
co-localization with eQTLs identified in Sardinia, suggesting that regulation of these genes mediates the 
association signals at these loci (Supplementary Table 15).  
 
One of the most differentiated eQTLs was associated with expression levels of the BAFF gene (p-value = 8.051 
x 10-12, ∆AFSRD-EUR = 0.25), which is known to be involved in the response and survival to malaria infection38-40 
and has unique evolutionary history in Sardinia (Steri et al, submitted). We also identified several regulatory 
variants for the CR1 gene whose product is involved in complement activation and immune complex formation 
during malaria infection41,42. CR1 has two eQTLs (chr1:g.207275799G>A and chr1:g.207667190G>C) and 9 
sQTLs. The eQTL at chr1:g.207667190G>C is highly differentiated between Sardinia and Europe (∆AFSRD-EUR = 
-0.25) (Supplementary Figure 8). Among the 9 sQTLs associated with CR1, two of them are highly differentiated: 
chr1:g.207681501C>G (∆AFSRD-EUR = 0.42) influences the abundance of ENST00000367051 and 
chr1:g.207716099A>C (∆AFSRD-EUR = 0.43) influences the abundance of ENST00000529814. Both sQTLs are 
tightly linked and in high LD (r2 = 0.99 and 0.95) with a variant at chr1:g.207757515A>G that has been previously 
associated with erythrocyte sedimentation rate in the SardiNIA cohort43.  
 
Finally, as ∆AF itself does not account for background selection near genes, we used an alternative method to 
define differentiated Sardinia eQTLs based on FST values (see Supplementary Note). Differentiated eQTLs 
identified with this method were similarly enriched near genes associated with malaria (p-value = 4.91 x 10-5, 
Supplementary Table 16) and near MS loci (Figure 2D), with MS being the most significantly enriched trait in 
both the EBI/NHGRI GWAS catalog (nominal p-value = 2.11 x 10-3, Supplementary Table 17) and ImmunoBase 
(nominal p-value = 7.41 x 10-5, Supplementary Table 18). 
 
Heritable patterns of extreme gene expression in families 
Beyond the unique history of the Sardinia population, the availability of family relationship data in the SardiNIA 
cohort provided an opportunity to identify the impact of rare, large-effect regulatory variation. Specifically, we 
developed a likelihood ratio test to identify patterns of extreme gene expression that segregated in families 
(Figure 3A; see Methods). We tested 61 Sardinian trios for the 15,243 genes included in our eQTL analyses and 
identified 809 genes where a parent and child are both expression outliers (median z-score = 2.97) at an FDR 
of 10% (Figure 3B). On average we found 13.3 shared gene expression outliers per child.  
 
Several lines of evidence suggest shared expression outliers are not due simply to parent-offspring shared 
environment. There was little correlation of gene expression between the outlier parent and the non-outlier 
partner (Pearson r = 0.20) (Figure 3D). Additionally, mothers and fathers were equally likely to be the outlier 
parent (p = 0.20), regardless of the sex of the child (p = 0.83) (Supplementary Figure 9). In addition, we used a 
separate method to identify outliers based on z-scores alone and found that approximately 10% of the average 



child’s extreme expression outliers were shared with one parent alone and the remaining 90% are likely not 
caused by genetics44 (Supplementary Figure 10). These results are concordant with Tabassum et al44 who found 
~100 expression outliers per individual that could be largely explained by extrinsic factors, e.g. cell type 
proportions. 
 
We found almost twice as many shared under-expression outliers (529 outliers, 65%) as over-expression outliers 
(280 outliers, 35%), consistent with observations of the effects of random substitutions in promoters and 
enhancers in massively parallel reporter assays45-47. Furthermore, since rare variants tend to be heterozygotic 
and thus only influence one allele, we hypothesized that outlier parents and children would be enriched for allele-
specific expression compared to non-outlier controls. We found that allele-specific expression was significantly 
enriched in outlier individuals for both under- and over-expression outliers (adjusted Wilcoxon rank-sum p-value 
= 6.0 x 10-6) (Figure 3C). This is likely a conservative estimate of the true enrichment, given the inherently low 
levels of read depth in under-expression outliers that limits the ability to measure allelic effects in outlier genes. 
These allelic effects were consistent between outlier parents and children (Pearson r = 0.84) but not with the 
other, non-outlier parent (Figure 3D). The strength of the outlier effect was also significantly associated with the 
enrichment of allele-specific expression (Spearman ρ = 0.338, p-value < 1 x 10-6), reflecting the capacity of allele-
specific effects to impact total expression (Figure 3E). 
 
Rare variants can underlie extreme gene expression in families 
Using the combination of whole genome data and family relationships, we were able to characterize potential 
causal variants underlying expression outliers. We first identified 3,464 rare variants (Sardinia MAF < 1%) that 
were located in 250 kb windows adjacent to the transcription start site (TSS) and end site (TES) of outlier genes 
and were unambiguously transmitted from the outlier parent to the outlier child (i.e. the variant was heterozygous 
in both the outlier parent and child and the other parent was homozygous for the reference allele). We also 
identified an equivalent set of 245,165 rare variants in the same genomic loci that were unambiguously 
transmitted between non-outlier parents and their children. We found at least one shared rare variant for 509 of 
the outlier genes (63%), with an average of 6.8 variants shared by outliers versus 4.0 shared by non-outliers 
(enrichment = 1.71, 95% confidence interval 1.65 - 1.77). Of interest, rare variants shared by outlier individuals 
were concentrated within 5 kb of the TSS (enrichment = 3.61, 95% confidence interval 2.96 – 4.24) and TES 
(enrichment = 3.00, 95% confidence interval 2.44 – 3.54) (Figure 4A) of outlier genes, similar to what has been 
observed for common regulatory variation48. Furthermore, rare variants shared by outliers were enriched in 
multiple functional annotations49 (Figure 4B, Supplementary Figure 11). For variants in the 50 kb window 
adjacent to the TSS, this enrichment was most notable in splice donor/acceptor sites (log odds = 4.05, p-value 
= 2.52 x 10-7) and regions associated with active transcription, including promoters (log odds = 0.91, p-value = 
8.8 x 10-9) and enhancers (log odds = 0.42, p-value = 0.0094) (enrichment data for different genomic window 
sizes is provided in Supplementary Tables 19-20). We further investigated whether other carriers of these 
variants had the same outlier expression profile as the parent-child pairs. We analyzed 2,912 variants (84% of 
the 3,464 outlier variants) that were heterozygous in at least four individuals in the cohort, regressing outlier 
gene expression on genotype at the rare variant position. The largest and most significant of these genotype-
expression associations for both over- and under-expression outliers were concentrated at the TSS of outlier 
genes (Figure 4C). Additionally, we found that metrics of conservation (GERP, PhyloP) and predicted functional 
relevance (FitCons, CADD) all discriminated the most significant associations (Figure 4D)50-53.  
 
Based on these observations, we developed a strict set of rules to distinguish putatively causal rare variants by 
prioritizing variants that were close to the TSS or likely involved in splicing, highly conserved, and replicated their 
effects in the larger population (see Methods). We identified candidate causal variants for 30 outlier genes 
(Supplementary Table 21), including five rare splicing variants. One of these splicing variants, 
chr12:g.121570899G>T, is found at the first exon-intron boundary of the P2RX7 gene, which codes for a ligand-
gated ion channel responsible for ATP-dependent lysis of macrophages. While chr12:g.121570899G>T is rare 
in all European populations including Sardinia, where it is most frequent with a MAF = 0.009% (Supplementary 
Table 22), it has been previously shown to disrupt proper splicing of P2RX7, leading to an elongated transcript 
that is subsequently degraded by nonsense-mediated decay and results in mono-allelic expression54. As 
expected, all carriers of chr12:g.121570899G>T (n = 12) in the Sardinia cohort under-expressed P2RX7 and all 
reads showed the same allele. While the other splicing variants have not been characterized, we saw similar 
trends for all five splicing variants suggesting that all of these putative splicing variants are effectively null alleles 
(Figure 5). 



 
Because the SardiNIA cohort has been extensively phenotyped, we were able to test for the association of rare 
variants with measured traits. Of the 30 putatively causal variants, 11 were associated with the expression of 
genes near significant GWAS loci. Of these, five genes (SPECC1, GLB1, CADM1, BRI3BP, and ANXA5) were 
associated with traits measured in the Sardinia cohort. However, we found no significant association between 
the five candidate variants for these genes and their matched GWAS traits (Supplementary Table 23). 
Furthermore, we found no significant relationship between expression levels of these genes and their matched 
GWAS trait (Supplementary Table 23), suggesting that either the gene is not involved in the trait or that dosage 
is not a critical factor. We next searched for outlier genes that have established roles in the manifestation of rare 
clinical traits. We were able to identify three outlier genes associated with clinical traits in our database: VPS13D 
is known to repress interleukin-6 (IL6) production; TSSC1 suppresses osteolysis; and mutations in POMGNT1 
disrupt dystroglycan and can interfere with skeletal muscle function. For each gene, we tested the genotype of 
the candidate rare variant with levels of the appropriate trait and then for the overall association between gene 
expression and the trait. We were, however, unable to find any significant evidence for association 
(Supplementary Table 24), consistent with recent observations in British-Pakistani cohorts for association testing 
of rare protein-coding variants in trait-associated genes6,55. While we were unable to identify any direct 
association between rare variants and clinical traits, we did observe a modest enrichment of outliers in potential 
disease genes and a marked enrichment of outlier genes in loss-of-function intolerant genes relative to common 
eQTLs (Supplementary Figure 12). 
 
DISCUSSION 
Our study focused on identifying the effect of population and individual-specific regulatory variants in Sardinia. 
We identified hundreds of novel or highly differentiated regulatory alleles and observed that these alleles reveal 
novel trait associations and reflect the island’s epidemiological history of multiple sclerosis and malaria. By 
combining whole genome sequencing data with transcriptomes from many families, we were able to identify 
patterns of outlier gene expression and implicate the functional role of rare regulatory variants56-59. While such 
observations have previously been limited to unrelated individuals58,59, we were able to identify hundreds of 
genes with large heritable effects and candidate rare regulatory variants. Relating the effects of candidate rare 
regulatory variants to phenotypes remained a significant challenge, comparable to systematic efforts to identify 
the phenotypic consequences of rare, protein-coding loss-of-function alleles. However, we observed that outlier 
expression effects were more prevalent in genes intolerant of loss-of-function variation, consistent with their 
increased potential for important individual consequences.  
 
As gene expression assays complement whole-genome sequencing, discovery of population-specific and rare, 
large-effect regulatory variants will enable the generation of new hypotheses to understand the molecular 
etiology of diverse disorders44 and increase our understanding of the utility of different genes as potential 
therapeutic targets. In particular, identifying extreme patterns of gene expression can be used to provide a more 
nuanced view of genic dosage tolerance than revealed by naturally occurring knockouts. We anticipate that large 
catalogs of rare, large-effect regulatory variants, found in either isolated populations or families, will yield new 
opportunities for clinical interpretation of the non-coding genome, precision health, and our understanding of 
genome biology. 
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FIGURES 

Figure 1. QTLs show larger effect sizes in Sardinia compared to Europe. The distribution of Spearman 
correlation coefficients (absolute value) is shown for (a) top expression QTLs (eQTLs) and (b) top allele-specific 
expression QTLs (aseQTLs) in Sardinia, Geuvadis, and DGN. Top eQTLs and aseQTLs in Sardinia show 
increased correlations relative to Geuvadis and DGN. To make analyses comparable across studies, 188 
unrelated individuals from each study were uniformly processed and analyses were performed on a subset of 
genes that were quantifiable in all three studies.  

 
 
  



Figure 2. Differentiated eQTLs in Sardinia. (a) Sardinian eQTLs are plotted based on their allele frequency in 
Europe (measured in the 1000 Genomes Project) and Sardinia. Blue points represent eQTLs in the top 1% of 
the |ΔAF| distribution. Sample sizes: |ΔAF| > 0.00 (n = 19,108 eQTLs), > 0.05 (n = 6,793), > 0.10 (n = 2,151), > 
0.15 (n = 567), > 0.20 (n = 134), and Top 1% (n = 192). (b) eQTLs with larger allele frequency differences 
compared to Europe have longer tracts of LD decay as potential evidence for recent positive selection. These 
are compared to eQTLs that have comparable allele frequencies in Sardinia and Europe (allele frequencies 
within ±2.5%; blue lines) as well as randomly selected, distance to TSS-matched, non-eQTL variants with large 
allele frequency changes (black line). (c) eQTLs linked to multiple sclerosis variants and malaria-associated 
genes are both enriched in allele frequency difference changes between Sardinia and Europe. (d) The 
significance of the top ten trait enrichments for differentiated eQTLs (red = ΔAF, blue = FST) after Bonferroni 
correction for all possible tests. Traits with less than 10 eQTLs in LD were filtered out. 

 
 
  



Figure 3. Outlier gene expression in Sardinian trios. (a) An example of a significant gene expression outlier 
effect that segregates in a single Sardinia trio. The father and daughter both under express the RINL gene and 
share a rare splicing variant. (b) A scatterplot showing the sharing of extreme gene expression patterns between 
parents and children in 61 Sardinian trios, with significant outliers highlighted (orange = 5% FDR and yellow = 
10% FDR). (c) Heterozygous sites in outlier genes show elevated levels of allelic imbalance (AI) in outlier 
individuals (red) versus the rest of the population (gray). Allelic imbalance (AI) measures the absolute deviance 
of the reference allele ratio from 0.5 at heterozygous sites. (d) Correlation matrices for gene expression and 
allele-specific expression within outlier trios suggest that the extreme regulatory effects are restricted to the 
affected individuals and not primarily a family-specific event due to a shared environment. (e) The relationship 
between outlier gene expression and allelic imbalance (AI) in outlier (red) and non-outlier (gray) individuals. The 
mean ± one s.d. is shown for each bin. 

 
 
  



Figure 4. Properties of rare, shared variants near outlier genes. (a) Relative enrichment in the number of 
rare variants transmitted between outlier parents and children versus non-outlier parents and children. Relative 
enrichments were calculated in overlapping windows of 5 kb for the 250 kb regions adjacent to the TSS and TES 
of outlier genes. Enrichment is measured as the relative risk of finding rare shared variants in outlier versus non-
outlier lineages in each window. (b) Shared rare variants in outlier lineages are enriched for functional regions 
of chromatin in peripheral blood and splice donor/acceptor regions. Enrichments are shown as the log odds ratio 
derived from Fisher’s exact tests with 95% confidence intervals. (c) The position of shared rare variants is plotted 
relative to the TSS against the regression coefficient derived from the rare eQTL analysis. The color represents 
under-expression (blue) and over-expression (yellow) rare eQTLs, and the size indicates relative significance. 
(d) Metrics of conservation, evolutionary constraint, fitness, and deleteriousness can identify the most significant 
rare eQTLs. The mean ± one s.d. is shown for each bin. 

 
 
 
  



Figure 5. Gene expression patterns in carriers of rare splicing variants. We identified five splicing variants 
in under-expression outliers - for each variant, the expression level of the affected gene is shown in red for 
heterozygous carriers in the Sardinia cohort and gray for individuals homozygous for the reference allele. The 
rare splicing variants for each gene are given here: chr12:g.121570899G>T for P2RX7; chr5:g.68490523G>A 
for CENPH; chr1:g.152009388C>T for S100A11; chr19:g.39368871C>T for RINL; and chr6:g.33237597C>G for 
VPS52. 

 

 
  



TABLES 
 

Table 1. Expression traits with at least one eQTL. We report the number of tests performed and the number 

of significant QTL associations for different expression traits at a false discovery rate of 5%. Associations that 

are significant by BH are significant after Bonferroni correction and Benjamini-Hochberg adjustment (see 

Methods) 

Measurement Trait type # of tested traits 

# of traits with at  

least one QTL (FDR 5%) 

BH By permutation 

Gene-level Protein coding 11,477 8,381 (73%) 9,019 (79%) 
 lncRNA 1,694 991 (69%) 1,258 (74%) 
 miRNA precursors 172 48 (27%) 55 (32%) 
 Other 1,900 935 (39%) 835 (44%) 

 Total 15,243 10,329 (68%) 11,167 (73%) 

Isoform-proportion* Protein coding 11,116 3,865 (35%) 4,515 (41%) 
 lncRNA 826 335 (41%) 373 (45%) 
 Other 661 213 (32%) 323 (49%) 

 Total 12,603 4,413 (35%) 5,120 (41%) 

* Isoforms results are reported at gene-level (only one sQTL per gene is reported) 

 

Table 2. Independent QTLs segmented by gene type. We report the number of independent QTLs for gene-

level and isoform-level analyses. Isoform results are grouped by their respective gene. 

Max # of 
independent 

QTLs 

Gene-level  Isoform-proportion  

(# of genes) (# of genes) 

Protein coding lncRNA miRNA precursors Protein coding lncRNA 

1 4,215 598 44 3,489 281 

2 2,833 386 8 799 60 

3 1,235 170 2 165 22 

4 428 66 0 36 8 

5 175 18 1 18 1 

6 82 6 0 3 1 

7 27 5 0 5 0 

8 14 3 0 0 0 

≥9 10 6 0 0 0 

Total 9,019 1,258 55 4,515 373 

 

 
  



ONLINE METHODS 
Study population and sample acquisition. Our study was performed on a subset of 624 participants from the 
larger SardiNIA cohort. All 624 participants live in the Lanusei Valley in the Ogliastra region of Sardinia. 
Participants represented a mixture of related individuals, including 61 complete trios, and unrelated individuals 
(n = 188; Supplementary Figure 13). Whole genomes for 606 of these samples were available from a previous 
published study20. For each participant, leukocytes were isolated from whole blood using the LeukoLOCK™ 
fractionation kit and RNA was extracted using TRI Reagent® (Ambion #AM9738) and isolated using the 
PureLink® RNA Mini Kit (Ambion #12183018A). The quantity and the integrity of isolated RNA samples was 
evaluated using the Agilent Technologies 2100 Bioanalyzer platform with the RNA 6000 LabChip® kit (Agilent 
#5067-1511) - samples with an RNA integrity number (RIN) less than 7.5 were discarded. Poly-A+ RNA was 
isolated from 4μg of high-quality total RNA samples through two rounds of positive selection and purification 
using magnetic beads following the TruSeq RNA Sample Preparation manual (Illumina #15015050).  

Sequencing library preparation, alignment, and quality control. Prior to library preparation, we added one 
of two ERCC RNA Spike-in Control Mixes (Ambion #4456740) to 288 samples at a 1:625 final dilution in order 
to assess the uniformity of library preparation across samples. Purified RNA samples were then processed into 
indexed, paired-end cDNA libraries using the TruSeq RNA-Seq Library Preparation Kit. Following purification, 
amplification, and cleanup, cDNA libraries were quantified using the Agilent Technologies 2100 Bioanalyzer with 
the Agilent DNA 1000 assay (Agilent #5067-1504). Sample-specific cDNA libraries were then pooled to obtain 
equimolar concentrations and loaded on to a paired-end flow cell using the Illumina cBot System and the TruSeq 
PE Cluster Generation kit v3 (Illumina #PE-401-3001). 51 bp paired-end reads were generated on an Illumina 
HiSeq 2000 using TruSeq SBS v3 reagents (Illumina #FC-401-3001). De-multiplexed FASTQ files were 
generated and aligned to the hs37d5 reference genome supplemented with ERCC spike-in sequences using 
STAR (version 2.2.0c)60. Three of the 627 samples were discarded due to extreme GC-content biases, and we 
observed several other well-known technical biases that we ultimately correct for (Supplementary Figure 14). A 
full description of library preparation and quality control procedures is available in the Supplementary Note. 

Quantification and normalization of gene, isoform, and allele-specific expression. Gene levels were 
quantified using HTSeq61 (0.5.4p5) over the GENCODE v14 annotation; counts were converted to FPKMs27,62 
and variance stabilized using DESeq63 (1.10.1). We then ran PEER26 (v1.3) in order to identify and remove 
confounding factors. The number of hidden factors to remove was decided by empirically optimizing our ability 
to discover eQTLs on a random subset of 1,500 genes. eQTLs were mapped using Merlin64 on PEER residuals 
after removing k hidden factors (we tested various k in the range of 0 to 100, see Supplementary Note) – we 
found that removing 30 hidden factors maximized our power to discover eQTLs (Supplementary Figure 1). We 
attempted to identify the biological or technical sources of these hidden factors; many corresponded to known 
technical biases like GC-content, 3’ and 5’ biases, etc. (Supplementary Table 1). We additionally filtered out non-
autosomal genes, genes with a mean FPKM less than 0.3 across all 624 samples, and genes with an FPKM of 
0 in 50% or more of the 624 samples. Ultimately we mapped eQTLs for 15,243 genes that passed these filters. 
Isoform quantification was performed for these 15,243 genes using Cufflinks27 (v2.1.1). Isoform proportions were 
computed as the ratio of the isoform FPKM relative to the sum of FPKMs for all the isoforms for each gene. We 
then filtered out genes with only one expressed isoform and where the isoform ratios did not follow a normal 
distribution (see Supplementary Note). For the 606 samples where whole genome data was available, allele-
specific expression (ASE) data was generated using samtools65 (v1.2) mpileup and quantified as the deviation 
of the reference allele ratio from 0.5. We only considered heterozygous sites with at least 30 reads and where 
both the reference and alternate allele comprised at least 2% of all supporting reads. We additionally restricted 
our analyses to sites with an ENCODE mappability score equal to one. Finally, we excluded ASE data for 49 
genes that showed significantly biased trends in allelic effects across individuals in our study, the DGN cohort, 
or the GEUVADIS cohort (Supplementary Table 25; Supplementary Figure 15). 

Quantitative trait loci (QTL) mapping. We used an integrated map of ~15 million SNPs for the 606 genotyped 
samples to map eQTLs and sQTLs using Merlin64 (v1.1.2). We excluded variants that were not in Hardy-
Weinberg equilibrium (HWE p-value < 1 x 10-6), had a MAF < 1% in the 606 samples, or had an imputation R2 
less than 0.3. Expression values (either expression residuals or isoform ratios) were standardized using Merlin’s 
inverse normal option. For each gene and isoform, we tested the association of the trait with all cis variants within 
1 Mb from the transcription start site (TSS) of the gene. We estimated the overall false discovery rate (FDR) by 
permutation (see Supplementary Note). We additionally calculated adjusted p-values by selecting the top 
association for each gene/isoform, applying a gene-level Bonferroni correction, and applying the Benjamini-



Hochberg procedure66 to the collection of top associations. Independent gene/isoform QTLs were identified by 
forward step-wise regression, in which significant QTLs were iteratively regressed out until the next best QTL 
was no longer significant at an FDR of 5% (Supplementary Figure 16). We also identified independent QTLs 
using MLMM28, a stepwise linear mixed model approach, and found similar results to our Merlin-based pipeline 
(Supplementary Tables 6-7). Additionally, we performed simulations in order to show that our independent QTL 
results were not a result of statistical noise, residual LD, and genotyping errors. Specifically, we repeated the 
following simulation ten times. For each gene with at least one eQTL, we chose a common SNP (MAF > 5%) 
within 1 Mb of the TSS to explain 25% of the gene expression variance in the simulated trait. We then ran our 
Merlin-based pipeline to detect independent eQTLs on the simulated expression traits, iteratively regressing out 
significant SNPs. We repeated these simulations a second time, excluding the randomly selected causal SNP 
from the association stage. We then compared the number of independent eQTLs identified in the real data 
versus the simulated datasets (Supplementary Tables 8-9). 

We mapped aseQTLs by computing the Spearman correlation of allelic imbalance in the 15,243 expressed 
genes with the genotype of nearby cis variants (within 1 Mb of the heterozygous site). Genotypes at cis variants 
were encoded as 0 (samples homozygous for the reference or non-reference allele) or 1 (heterozygous 
samples). In order to compare effect sizes across studies, we identified eQTLs and aseQTLs in 188 unrelated 
Sardinians and compared them with a randomly chosen subset of 188 unrelated individuals in DGN17 and 
GEUVADIS15. eQTLs in the unrelated 188 individuals for each cohort were recalculated using Matrix eQTL67. 

We estimated the reproducibility of Sardinian eQTLs using the 𝜋1 statistic68 after re-processing each dataset with 
our pipeline (Supplementary Tables 10-11, 26). A full description of how we controlled for power differences 
across studies is available in the Supplementary Note. 

Co-localization of GWAS and eQTL signals. Co-localization analyses were performed with eCAVIAR29 using 
default parameters. eCAVIAR calculates a posterior probability that two association signals overlap (CLPP 
score), accounting for linkage disequilibrium in the study population where the two signals are measured. The 
supplied LD was computed with vcftools (for the GWAS signals outside of Sardinia, we used LD calculated for 
European genotypes in the 1000 Genomes Project). For the ARHGDIB co-localization analyses, associations 
with neutrophil and lymphocyte percentages were calculated within SardiNIA. For the co-localization analysis 
between multiple sclerosis GWAS and eQTL associations, we used the GWAS data provided by the International 
Multiple Sclerosis Genetics Consortium69 and the primary eQTL association data from Sardinia (i.e. the 
association for each SNP without adjusting for conditionally independent eQTLs). We calculated the CLPP score 
for the identified MS gene as well as nearby genes (±1 Mb of the GWAS SNP) and report the rank of the identified 
gene in the list of all genes tested for that GWAS locus (Supplementary Table 15). For the 21 genes we tested, 
14 of the target genes had the highest evidence of co-localization versus background and 3 had the second 
highest evidence of co-localization. Only two genes showed very little evidence of co-localization (CD6 and CTD-
2006C1.2). 

Allelic differentiation, selection, and disease association. Analysis of allelic differentiation and selection was 
carried out on a subsample (n = 691) of the SardiNIA cohort for which phased genotyped data was already 
available20 and on data from the 1000 Genomes Phase 35. Integrated haplotype scores (iHS) were computed 
using the selscan70 software on common variants (MAF ≥ 1%) that passed QC filters (see Supplementary Note). 

The delta allele frequency for Sardinian QTLs, 𝛥𝐴𝐹𝑆𝑅𝐷−𝐸𝑈𝑅, was computed as the deviation between the 
Sardinian MAF and the European MAF (as computed by the 1000 Genomes project). We then tested for the 
enrichment of different eQTLs near significant GWAS loci. Briefly, we identified significant eQTL in high LD with 
significant GWAS SNPs (r2 greater than 0.8). For each GWAS trait, we then built a 2x2 count table where the 
rows separated differentiated eQTLs from non-differentiated eQTLs and the columns separated eQTLs in LD 
with a GWAS SNP and eQTLs not in LD with a GWAS SNP. We then performed a Fisher’s exact test on each 
GWAS contingency table, where a significant p-value after Bonferroni correction for the number of traits tested 
implicated an enrichment of differentiated eQTLs for the GWAS trait relative to all significant eQTLs in Sardinia 
(Supplementary Table 14). We repeated these analyses using different thresholds for differentiation 

(𝛥𝐴𝐹𝑆𝑅𝐷−𝐸𝑈𝑅 greater than 0.05, 0.10, 0.15, 0.20, and 0.25) (Supplementary Figure 7). We identified novel eQTLs 
in Sardinia by excluding SNPs recorded in other SNP databases (1000 Genomes Phase 35, dbSNP71, ExAC11, 
and the UK10K project4. 
 
Identifying heritable patterns of outlier gene expression. For the 61 trios in our study, we developed a 
generalized likelihood ratio test that identifies extreme gene expression signatures that are shared between one 



parent and their child (a full derivation of the test is given in the Supplementary Note). In practice, we ran our 
outlier pipeline on the same PEER normalized data as we did for the eQTL analyses; we tested another 
normalization pipeline to see if PEER was over-correcting outlier signals but found less results overall (instead 
of using PEER, we regressed out covariates that were highly correlated with PEER factors as described in 
Supplementary Table 27). We tested each trio for all 15,243 expressed genes used in the eQTL analyses and 
evaluated significance via permutation, selecting the most significant trio for each gene and applying the 
Benjamini-Hochberg adjustment66. For all genes with an outlier trio at a 10% FDR we compared ASE in the 
outlier individuals with ASE in the rest of the participants (non-outliers). We next identified rare variants shared 
between outlier parents and children in the 250 kb window of the outlier gene and measured the relative 
enrichment of these variants with similarly identified variants in non-outlier individuals; confidence intervals were 
calculated via bootstrap resampling (B = 1000) of all observed shared rare variants. Shared rare variants were 
annotated with chromatin state annotations from peripheral blood mononuclear cells (E062) from the Roadmap 
Epigenomics Consortium49 (Supplementary Table 28). Log odds scores and confidence intervals were calculated 
using Fisher’s exact tests for all functional annotations (Supplementary Tables 19-20). We then tested whether 
the effect of these shared rare variants on expression replicated in the larger study cohort (i.e. where there were 
at least 4 carriers in the population).  

Clinical relevance of candidate causal rare variants. We prioritized 30 of these shared rare variants as 
candidate causal variants based on several annotations (e.g. proximity to the TSS, were either highly 
conserved/deleterious, or were potential splicing variants) (Supplementary Table 21). Five of these were 
associated with genes near significant GWAS loci and 3 were associated with genes previously implicated in the 
manifestation of clinical traits available to us for study. We tested these rare variants for association to the 
complex traits or disease they were predicted to impact. For categorical traits (e.g. Celiac disease and bipolar 
disorder), we performed a likelihood ratio test comparing two nested logistic regression models with the full model 
(genotype at the rare variant locus, sex, age, and age2) and the reduced null model (without the above 
covariates). Empirical p-values were computed by permuting sample genotypes 1000 times. To test rare variants 
for continuous traits (e.g. BMI), we ran the lmekin function from the kinship R package to perform a likelihood 
ratio test comparing two nested linear mixed models with the full model (genotype at the rare variant locus, sex, 
age, and age2) and the reduced null model (without the above covariates). We then calculated the Pearson 
correlation between outlier gene expression and the adjusted trait data and calculated the correlation of gene 
expression with each clinical trait for each outlier gene-trait association; significance was assessed as the 
percentile of the empirical distribution obtained from the p-values for all tested genes (Supplementary Tables 
23-24). 
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