271 research outputs found

    Simulation of radiation driven wind from disc galaxies

    Get PDF
    We present 2-D hydrodynamic simulation of rotating galactic winds driven by radiation. We study the structure and dynamics of the cool and/or warm component(T104T \simeq 10^4 K) which is mixed with dust. We have taken into account the total gravity of a galactic system that consists of a disc, a bulge and a dark matter halo. We find that the combined effect of gravity and radiation pressure from a realistic disc drives the gas away to a distance of 5\sim 5 kpc in 37\sim 37 Myr for typical galactic parameters. The outflow speed increases rapidly with the disc Eddington parameter Γ0(=κI/(2cGΣ)\Gamma_0(=\kappa I/(2 c G \Sigma)) for Γ01.5\Gamma_0 \ge 1.5. We find that the rotation speed of the outflowing gas is 100\lesssim 100 km s1^{-1}. The wind is confined in a cone which mostly consist of low angular momentum gas lifted from the central region.Comment: 10 pages, 11 figures, Accepted for publication in MNRA

    Supernovae and AGN driven galactic outflows

    Full text link
    We present analytical solutions for winds from galaxies with NFW dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae, as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (a) v_star \sim (\dot{E} / 2 \dot{M})^{1/2} describes the effect of starburst activity, with \dot{E}, \dot{M} as energy and mass injection rate in a central region of radius R; (b) \vbh ~ (G\mbh / 2 R)^{1/2} for the effect of a central black hole of mass \mbh on gas at distance R and (c) v_{s} =(GM_h/ 2Cr_s)^{1/2} which is closely related to the galaxy circular velocity, with C as a function of halo concentration parameter. We find the wind terminal speed to be 2 (v_star^2 +1.5(\Gamma -1) \vbh^2 -v_s^2)^{1/2}, where \Gamma is the ratio of force due to radiation pressure to gravity of the central black hole. We also find that: (a) winds from quiescent star forming galaxies cannot escape from 10^{11.5} \le M_h \le 10^{12.5}Msun galaxies, (b) circumgalactic gas at large distances should be present for galaxies in this mass range, (c) for an escaping wind, the wind speed in low to intermediate mass galaxies is ~ 400--1000 km/s, consistent with observed X-ray temperatures; (d) winds from massive galaxies with AGN have speeds \gtrsim 1000 km/s. We also find that the ratio [2 v_star ^2 -(1 -\Gamma) \vbh^2]/ v_c^2 dictates the amount of gas lost. Used in conjunction with an appropriate relation between \mbh and M_h, and an appropriate opacity of dust grains in IR (K band), this ratio becomes minimum at a certain halo mass scale (M_h ~ 10^{12--12.5} Msun) that signifies the cross-over of AGN domination in outflow properties from starburst activity at lower masses. We find that stellar mass for massive galaxies scales as M_star \propto M_h^{0.26},and for low mass galaxies, M_star \propto M_h^{5/3}.Comment: 20 pages, 6 figures, Accepted in ApJ, Comments Welcom

    The therapeutic potential of the filarial nematode-derived immunodulator, ES-62 in inflammatory disease

    Get PDF
    The dramatic recent rise in the incidence of allergic or autoimmune inflammatory diseases in the West has been proposed to reflect the lack of appropriate priming of the immune response by infectious agents such as parasitic worms during childhood. Consistent with this, there is increasing evidence supporting an inverse relationship between worm infection and T helper type 1/17 (Th1/17)-based inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes and multiple sclerosis. Perhaps more surprisingly, given that such worms often induce strong Th2-type immune responses, there also appears to be an inverse correlation between parasite load and atopy. These findings therefore suggest that the co-evolution of helminths with hosts, which has resulted in the ability of worms to modulate inflammatory responses to promote parasite survival, has also produced the benefit of protecting the host from pathological lesions arising from aggressive proinflammatory responses to infection or, indeed, aberrant inflammatory responses underlying autoimmune and allergic disorders. By focusing upon the properties of the filarial nematode-derived immunomodulatory molecule, ES-62, in this review we shall discuss the potential of exploiting the immunomodulatory products of parasitic worms to identify and develop novel therapeutics for inflammation

    Heating of blue compact dwarf galaxies: gas distribution and photoionization by stars in I Zw 18

    Full text link
    Photoionization models so far are unable to account for the high electron temperature Te([O III]) implied by the line ratio [O III]4363A/[O III]5007A in low-metallicity blue compact dwarf galaxies, casting doubts on the assumption of photoionization by hot stars as the dominant source of heating of the gas in these objects. Combinations of runs of the 1-D photoionization code NEBU are used to explore alternative models for the giant H II region shell I Zw 18 NW. Acceptable models are obtained, which represent schematically an incomplete shell comprising radiation-bounded condensations embedded in a low-density matter-bounded diffuse medium. The thermal pressure contrast between gas components is about a factor 7. The diffuse phase can be in pressure balance with the hot superbubble fed by mechanical energy from the inner massive star cluster. The failure of previous modellings is ascribed to (1) the adoption of an inadequate small-scale gas density distribution, which proves critical when the collisional excitation of hydrogen contributes significantly to the cooling of the gas, and possibly (2) a too restrictive implementation of Wolf-Rayet stars in synthetic stellar cluster spectral energy distributions. A neutral gas component heated by soft X-rays, whose power is less than 1% of the star cluster luminosity and consistent with CHANDRA data, can explain the low-ionization fine-structure lines detected by SPITZER. [O/Fe] is slightly smaller in I Zw 18 NW than in Galactic Halo stars of similar metallicity and [C/O] is correlatively large. Extra heating by, e.g., dissipation of mechanical energy is not required to explain Te([O III]) in I Zw 18. Important astrophysical developments are at stakes in the 5% uncertainty attached to [O III] collision strengths.Comment: 20 pages, 8 figures, to be published in A&

    A review of blisters caused by wound dressing components: can they impede post-operative rehabilitation and discharge?

    Get PDF
    This review highlights that some wound dressings can be the cause of blistering. It also presents the mechanisms by which blisters may be caused by poor choice of dressings. The subsequent impact of the blisters on preventing patient mobility - and hence rehabilitation in terms of physiotherapy – are also identified. The possibility that the clinical sequelae (e.g. delayed wound healing, restricted joint range of motion (ROM), muscle atrophy and increased risk of deep vein thrombosis (DVT)) resulting from this might have a significant and deleterious impact upon patient-related outcomes is discussed. Strategies for the treatment and prevention of blisters are proposed, based upon current knowledge and expertise. The criticality of the wound care specialist and the physiotherapist working together to overcome these challenges and enhance patient care, are underlined. This article is a review of the relevant literature combined with opinions based upon experience and knowledge of the authors

    Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless mHealth System

    Get PDF
    Prompt and accurate detection of stress is essential to the monitoring and management of mental health and human performance. Considering that current methods such as questionnaires are very subjective, we propose a highly sensitive, selective, miniaturized mHealth device based on laser-enabled flexible graphene sensor to non-invasively monitor the level of stress hormones (e.g., cortisol). We report a strong correlation between sweat and circulating cortisol and demonstrate the prompt determination of sweat cortisol variation in response to acute stress stimuli. Moreover, we demonstrate, for the first time, the diurnal cycle and stress-response profile of sweat cortisol, revealing the potential of dynamic stress monitoring enabled by this mHealth sensing system. We believe that this platform could contribute to fast, reliable, and decentralized healthcare vigilance at the metabolic level, thus providing an accurate snapshot of our physical, mental, and behavioral changes

    Terrestrial habitat requirements of nesting freshwater turtles

    Get PDF
    Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of \u3e 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m for Malaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6–98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (\u3c200 m zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys, Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings
    corecore