1,476 research outputs found

    SPECTRE: a Suite of PhylogEnetiC Tools for Reticulate Evolution

    Get PDF
    Split-networks are a generalization of phylogenetic trees that have proven to be a powerful tool in phylogenetics. Various ways have been developed for computing such networks, including split-decomposition, NeighborNet, QNet and FlatNJ. Some of these approaches are implemented in the user-friendly SplitsTree software package. However, to give the user the option to adjust and extend these approaches and to facilitate their integration into analysis pipelines, there is a need for robust, open-source implementations of associated data structures and algorithms. Here we present SPECTRE, a readily available, open-source library of data structures written in Java, that comes complete with new implementations of several pre-published algorithms and a basic interactive graphical interface for visualizing planar split networks. SPECTRE also supports the use of longer running algorithms by providing command line interfaces, which can be executed on servers or in High Performance Computing (HPC) environments

    The Influence of Setting on Care Coordination for Childhood Asthma

    Full text link
    Asthma affects 7.1 million children in the United States, disproportionately burdening African American and Latino children. Barriers to asthma control include insufficient patient education and fragmented care. Care coordination represents a compelling approach to improve quality of care and address disparities in asthma. The sites of The Merck Childhood Asthma Network Care Coordination Programs implemented different models of care coordination to suit specific settings—school district, clinic or health care system, and community—and organizational structures. A variety of qualitative data sources were analyzed to determine the role setting played in the manifestation of care coordination at each site. There were inherent strengths and challenges of implementing care coordination in each of the settings, and each site used unique strategies to deliver their programs. The relationship between the lead implementing unit and entities that provided (1) access to the priority population and (2) clinical services to program participants played a critical role in the structure of the programs. The level of support and infrastructure provided by these entities to the lead implementing unit influenced how participants were identified and how asthma care coordinators were integrated into the clinical care team.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113262/1/MCAN_Settings_Manuscript_20150708.docxhttp://deepblue.lib.umich.edu/bitstream/2027.42/113262/3/MCAN_Settings_Manuscript_20150708.pdfDescription of MCAN_Settings_Manuscript_20150708.docx : Main ArticleDescription of MCAN_Settings_Manuscript_20150708.pdf : Main Article with Title Page and Abstrac

    A general framework for the distance–decay of similarity in ecological communities

    Get PDF
    Species spatial turnover, or β-diversity, induces a decay of community similarity with geographic distance known as the distance–decay relationship. Although this relationship is central to biodiversity and biogeography, its theoretical underpinnings remain poorly understood. Here, we develop a general framework to describe how the distance–decay relationship is influenced by population aggregation and the landscape-scale species-abundance distribution. We utilize this general framework and data from three tropical forests to show that rare species have a weak influence on distance–decay curves, and that overall similarity and rates of decay are primarily influenced by species abundances and population aggregation respectively. We illustrate the utility of the framework by deriving an exact analytical expression of the distance–decay relationship when population aggregation is characterized by the Poisson Cluster Process. Our study provides a foundation for understanding the distance–decay relationship, and for predicting and testing patterns of beta-diversity under competing theories in ecology

    A structural biology community assessment of AlphaFold2 applications

    Get PDF
    Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research

    Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord

    Get PDF
    Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord

    The Magellan-TESS Survey I: Survey Description and Mid-Survey Results

    Get PDF
    One of the most significant revelations from Kepler is that roughly one-third of Sun-like stars host planets which orbit their stars within 100 days and are between the size of Earth and Neptune. How do these super-Earth and sub-Neptune planets form, what are they made of, and do they represent a continuous population or naturally divide into separate groups? Measuring their masses and thus bulk densities can help address these questions of their origin and composition. To that end, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting exoplanets discovered by TESS and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, RV measurements of small planets have been challenging to obtain due to the faintness and low RV semi-amplitudes of most Kepler systems, and challenging to interpret due to the potential biases in the existing ensemble of small planet masses from non-algorithmic decisions for target selection and observation plans. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and multi-year observing strategy. In this paper, we (1) describe the motivation and survey strategy behind the MTS, (2) present our first catalog of planet mass and density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population analysis sample, five that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find qualitative agreement with prior mass-radius relations but some quantitative differences (abridged). The the results of this work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of figures and tables). Submitted to AAS Journal

    Extracellular vesicles and their nucleic acids for biomarker discovery

    Get PDF
    Extracellular vesicles (EVs) are a heterogenous population of vesicles originate from cells. EVs are found in different biofluids and carry different macromolecules, including proteins, lipids, and nucleic acids, providing a snap shot of the parental cells at the time of release. EVs have the ability to transfer molecular cargoes to other cells and can initiate different physiological and pathological processes. Mounting lines of evidence demonstrated that EVs' cargo and machinery is affected in disease states, positioning EVs as potential sources for the discovery of novel biomarkers. In this review, we demonstrate a conceptual overview of the EV field with particular focus on their nucleic acid cargoes. Current knowledge of EV subtypes, nucleic acid cargo and pathophysiological roles are outlined, with emphasis placed on advantages against competing analytes. We review the utility of EVs and their nucleic acid cargoes as biomarkers and critically assess the newly available advances in the field of EV biomarkers and high throughput technologies. Challenges to achieving the diagnostic potential of EVs, including sample handling, EV isolation, methodological considerations, and bioassay reproducibility are discussed. Future implementation of ‘omics-based technologies and integration of systems biology approaches for the development of EV-based biomarkers and personalized medicine are also considered
    corecore