72 research outputs found

    Equal contributions of feline immunodeficiency virus and coinfections to morbidity in African lions

    Get PDF
    Feline immunodeficiency virus (FIV) is a pathogenic lentivirus related to human and simian immunodeficiency viruses that has been associated with AIDS-like pathologies in domestic and wild cats, as well as in hyenas. Despite known pathologies, progressive immunosuppression and ill health effects driven by these lentiviruses in association with other secondary infections remain understudied in free-ranging species. Here, the role of coinfections by gastrointestinal parasites and tick-borne hemoparasites for FIV disease progression was explored in 195 free-ranging African lions (Panthera leo) living in Kruger National Park (KNP), South Africa. Using statistical methodology, we evaluated the effects of FIV on a range of health indicators to explore how direct and indirect effects of FIV and associated coinfections align to determine lion health outcomes. Findings show direct negative effects of FIV on host immunity and nutritional status, and exacerbation of aggressive behaviors, conditions which may increase exposure/susceptibility to other secondary infections. When taken together, the contribution of coinfecting parasites to morbidity in lions is of similar magnitude as direct effects of FIV infection alone, suggesting that the particular coinfection assemblage may play a role in mediating disease progression within natural lion populations

    Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury

    Get PDF
    Umbilical cord blood (UCB) represents a readily available source of hematopoietic and endothelial precursors at early ontogeny. Understanding the proangiogenic functions of these somatic progenitor subtypes after transplantation is integral to the development of improved cell-based therapies to treat ischemic diseases. We used fluorescence-activated cell sorting to purify a rare (\u3c0.5%) population of UCB cells with high aldehyde dehydrogenase (ALDHhi) activity, a conserved stem/progenitor cell function. ALDHhicells were depleted of mature monocytes and T- and B-lymphocytes and were enriched for early myeloid (CD33) and stem cell-associated (CD34, CD133, and CD117) phenotypes. Although these cells were primarily hematopoietic in origin, UCB ALDHhi cells demonstrated a proangiogenic transcription profile and were highly enriched for both multipotent myeloid and endothelial colony-forming cells in vitro. Coculture of ALDHhi cells in hanging transwells promoted the survival of human umbilical vein endothelial cells (HUVEC) under growth factor-free and serum-free conditions. On growth factor depleted matrigel, ALDHhicells significantly increased tube-like cord formation by HUVEC. After induction of acute unilateral hind limb ischemia by femoral artery ligation, transplantation of ALDHhi cells significantly enhanced the recovery of perfusion in ischemic limbs. Despite transient engraftment in the ischemic hind limb, early recruitment of ALDHhi cells into ischemic muscle tissue correlated with increased murine von Willebrand factor blood vessel and CD31+ capillary densities. Thus, UCB ALDHhi cells represent a readily available population of proangiogenic progenitors that promote vascular regeneration. This work provides preclinical justification for the development of therapeutic strategies to treat ischemic diseases using UCB-derived ALDH hi mixed progenitor cells. © AlphaMed Press

    Fecal Methylmercury Correlates With Gut Microbiota Taxa in Pacific Walruses (Odobenus rosmarus divergens)

    Get PDF
    ObjectivesMethylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States.MethodsTotal mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models.ResultsIn fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium.ConclusionsMedian %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation

    Long-term trends of second generation anticoagulant rodenticides (SGARs) show widespread contamination of a bird-eating predator, the Eurasian sparrowhawk (Accipiter nisus) in Britain

    Get PDF
    Second generation anticoagulant rodenticides (SGARs) are widely used to control rodents around the world. However, contamination by SGARs is detectable in many non-target species, particularly carnivorous mammals or birds-of-prey that hunt or scavenge on poisoned rodents. The SGAR trophic transfer pathway via rodents and their predators/scavengers appears widespread, but little is known of other pathways of SGAR contamination in non-target wildlife. This is despite the detection of SGARs in predators that do not eat rodents, such as specialist bird-eating hawks. We used a Bayesian modelling framework to examine the extent and spatio-temporal trends of SGAR contamination in the livers of 259 Eurasian Sparrowhawks, a specialist bird-eating raptor, in regions of Britain during 1995–2015. SGARs, predominantly difenacoum, were detected in 81% of birds, with highest concentrations in males and adults. SGAR concentrations in birds were lowest in Scotland and higher or increasing in other regions of Britain, which had a greater arable or urban land cover where SGARs may be widely deployed for rodent control. However, there was no overall trend for Britain, and 97% of SGAR residues in Eurasian Sparrowhawks were below 100 ng/g (wet weight), which is a potential threshold for lethal effects. The results have potential implications for the population decline of Eurasian Sparrowhawks in Britain. Fundamentally, the results indicate an extensive and persistent contamination of the avian trophic transfer pathway on a national scale, where bird-eating raptors and, by extension, their prey appear to be widely exposed to SGARs. Consequently, these findings have implications for wildlife contamination worldwide, wherever these common rodenticides are deployed, as widespread exposure of non-target species can apparently occur via multiple trophic transfer pathways involving birds as well as rodents

    Embryonic Morphogen Nodal Promotes Breast Cancer Growth and Progression

    Get PDF
    Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (\u3c100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer. © 2012 Quail et al

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium

    Get PDF
    Background The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. Methods For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. Findings Overall, 116 841 cases were analysed: 76 481 in 2018–19, before the pandemic, and 40 360 in 2020–21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66) and N meningitidis (0·26; 0·21–0·31), while no significant changes were observed for S agalactiae (1·02; 0·75–1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145–55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. Interpretation COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. Funding Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore