426 research outputs found

    Heat transfer at dielectric-metallic interfaces in the ultra-low temperature range

    Get PDF
    In the framework of the AEgIS project a series of steady state and dynamic heat transfer measurements at ultra-low temperatures was conducted in the Central Cryogenic Laboratory at CERN. Two sandwich setups, simulating the behaviour of ultra-cold AEgIS electrodes, were investigated and compared, namely: a sapphire − indium − copper and a sapphire − titanium − gold − indium − copper sandwich. The total thermal resistivity of both sandwich setups was evaluated as a function of the influence of normal and superconducting thin layers and multiple dielectric − metallic interfaces in terms of Kapitza resistance. The resulting limitations of the electrode’s design are presented

    ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS

    Get PDF
    We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≟ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_Îł + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, áč€ â‰ˆ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors

    Response of vegetation to fire disturbance: short-term dynamics in two savanna physiognomies

    Get PDF
    Fire is a constitutive ecological force in savanna ecosystems, but few studies have monitored its short-term effects on plant community dynamics. This study investigated changes in plant diversity in the South American savanna (Cerrado) after severe disturbance by fire. We monitored 30 permanent plots (10 m × 5 m) distributed in two Cerrado physiognomies (típico: more forested; ralo: grass-dominated), being 10 plots in the area disturbed by fire, and five in a preserved control area (undisturbed). From August 2010 to June 2011, we evaluated changes in species richness, abundance and composition of savanna vegetation. Monitoring started one week after the fire; disturbed plots were surveyed monthly, while control plots were surveyed every two months. We observed rapid reassembling in both physiognomies: plots affected by fire showed rapid increase in species richness and plant density during the first four months after the disturbance. Concerning species composition, disturbed plots in the cerrado típico tended to converge to control plots after one year, but each local assemblage followed particular temporal trajectories. A different pattern characterized cerrado ralo plots, which showed heterogeneous trajectories and lack of convergence between disturbed and control plots; the structure of these assemblages will likely change in next years. In conclusion, our results showed that fire significantly affected plant diversity in the two savanna physiognomies (cerrado típico and ralo), but also indicated that community reassembling is fast, with different dynamics between Cerrado physiognomies

    Scaling solution, radion stabilization, and initial condition for brane-world cosmology

    Full text link
    We propose a new, self-consistent and dynamical scenario which gives rise to well-defined initial conditions for five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing evidence that the scaling solution is a future attractor.Comment: 17 pages; version accepted for PRD, references adde

    Ultra-red Galaxies Signpost Candidate Protoclusters at High Redshift

    Get PDF
    We present images obtained with LABOCA of a sample of 22 galaxies selected via their red Herschel SPIRE colors. We aim to see if these luminous, rare, and distant galaxies are signposting dense regions in the early universe. Our 870 ÎŒm survey covers an area of ≈1 deg2 down to an average rms of 3.9 mJy beam−13.9\,\mathrm{mJy}\,{\mathrm{beam}}^{-1}, with our five deepest maps going ≈2× deeper still. We catalog 86 dusty star-forming galaxies (DSFGs) around our "signposts," detected above a significance of 3.5σ. This implies a 100−30+30%{100}_{-30}^{+30} \% overdensity of S870>8.5 mJy{S}_{870}\gt 8.5\,\mathrm{mJy} (or {L}_{\mathrm{FIR}}=6.7\times {10}^{12}\mbox{--}2.9\times {10}^{13}\,{L}_{\odot }) DSFGs, excluding our signposts, when comparing our number counts to those in "blank fields." Thus, we are 99.93% confident that our signposts are pinpointing overdense regions in the universe, and ≈95% [50%] confident that these regions are overdense by a factor of at least ≄1.5 × [2×]. Using template spectral energy distributions (SEDs) and SPIRE/LABOCA photometry, we derive a median photometric redshift of z = 3.2 ± 0.2 for our signposts, with an inter-quartile range of z = 2.8–3.6, somewhat higher than expected for ~850 ÎŒm selected galaxies. We constrain the DSFGs that are likely responsible for this overdensity to within ∣ΔzâˆŁâ©œ0.65| {\rm{\Delta }}z| \leqslant 0.65 of their respective signposts. These "associated" DSFGs are radially distributed within (physical) distances of 1.6 ± 0.5 Mpc from their signposts, have median star formation rates (SFRs) of ≈(1.0±0.2)×103 M⊙ yr−1\approx (1.0\pm 0.2)\times {10}^{3}\,{M}_{\odot }\,{\mathrm{yr}}^{-1} (for a Salpeter stellar inital mass function) and median gas reservoirs of ∌1.7×1011 M⊙\sim 1.7\times {10}^{11}\,{M}_{\odot }. These candidate protoclusters have average total SFRs of at least ≈(2.3±0.5)×103 M⊙ yr−1\approx (2.3\pm 0.5)\times {10}^{3}\,{M}_{\odot }\,{\mathrm{yr}}^{-1} and space densities of ~9 × 10−7 Mpc−3, consistent with the idea that their constituents may evolve to become massive early-type galaxies in the centers of the rich galaxy clusters we see today

    The SCUBA-2 Cosmology Legacy Survey: Ultraluminous star-forming galaxies in a z=1.6 cluster

    Get PDF
    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities 1012 L ☉ and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover one of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ~ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, MH ~ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ~ 1.6 (MH ~ –20.5 and MH ~ –21.5, respectively, at z ~ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure

    Galaxy and Mass Assembly (GAMA): Variation in galaxy structure across the green valley

    Get PDF
    Using a sample of 472 local Universe (z \u3c 0.06) galaxies in the stellar mass range 10.25 \u3c logM*/M⊙ \u3c 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    • 

    corecore