787 research outputs found

    The a-theorem and conformal symmetry breaking in holographic RG flows

    Full text link
    We study holographic models describing an RG flow between two fixed points driven by a relevant scalar operator. We show how to introduce a spurion field to restore Weyl invariance and compute the anomalous contribution to the generating functional in even dimensional theories. We find that the coefficient of the anomalous term is proportional to the difference of the conformal anomalies of the UV and IR fixed points, as expected from anomaly matching arguments in field theory. For any even dimensions the coefficient is positive as implied by the holographic a-theorem. For flows corresponding to spontaneous breaking of conformal invariance, we also compute the two-point functions of the energy-momentum tensor and the scalar operator and identify the dilaton mode. Surprisingly we find that in the simplest models with just one scalar field there is no dilaton pole in the two-point function of the scalar operator but a stronger singularity. We discuss the possible implications.Comment: 50 pages. v2: minor changes, added references, extended discussion. v3: we have clarified some of the calculations and assumptions, results unchanged. v4: published version in JHE

    Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter

    Get PDF
    We address the open question of performing an explicit stabilisation of all closed string moduli (including dilaton, complex structure and Kaehler moduli) in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. In order to control complex structure moduli stabilisation we consider Calabi-Yau manifolds which exhibit a discrete symmetry that reduces the effective number of complex structure moduli. We calculate the corresponding periods in the symplectic basis of invariant three-cycles and find explicit flux vacua for concrete examples. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario. In the considered example the visible sector lives at a dP_6 singularity which can be higgsed to the phenomenologically interesting class of models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde

    Superstring Theory and CP- Violating Phases: Can They Be Related?

    Get PDF
    We investigate the possibility of large CP- violating phases in the soft breaking terms derived in superstring models. The bounds on the electric dipole moments (EDM's) of the electron and neutron are satisfied through cancellations occuring because of the structure of the string models. Three general classes of four-dimensional string models are considered: (i) orbifold compactifications of perturbative heterotic string theory, (ii) scenarios based on Ho\v{r}ava-Witten theory, and (iii) Type I string models (Type IIB orientifolds). Nonuniversal phases of the gaugino mass parameters greatly facilitate the necessary cancellations among the various contributions to the EDM's; in the overall modulus limit, the gaugino masses are universal at tree level in both the perturbative heterotic models and the Ho\v{r}ava-Witten scenarios, which severely restricts the allowed regions of parameter space. Nonuniversal gaugino masses do arise at one-loop in the heterotic orbifold models, providing for corners of parameter space with O(1){\cal O}(1) phases consistent with the phenomenological bounds. However, there is a possibility of nonuniversal gaugino masses at tree level in the Type I models, depending on the details of the embedding of the SM into the D- brane sectors. We find that in a minimal model with a particular embedding of the Standard Model gauge group into two D- brane sectors, viable large phase solutions can be obtained over a wide range of parameter space.Comment: 28 pages, 6 figures; corrected bug in the code and a few typos, results qualitatively unchange

    Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients

    Get PDF
    This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.This work has received research funding from the Spanish government (www.micinn.es) under project TEC2012 34306 (DiagnoSIS, Diagnosis by means of Statistical Intelligent Systems, 70K€) and projects P09-TIC-4530 (300K€) and P11-TIC-7103 (156K€) from the Andalusian government (http://www.juntadeandalucia.es/organismo​s/economiainnovacioncienciayempleo.html)

    Exclusive Photoproduction of the Cascade (Xi) Hyperons

    Full text link
    We report on the first measurement of exclusive Xi-(1321) hyperon photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The final state is identified by the missing mass in p(gamma,K+ K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state Xi-(1321)1/2+, and have estimated the total cross section for its production. We have also observed the first excited state Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss the possibilities of a search for the recently proposed Xi5-- and Xi5+ pentaquarks.Comment: submitted to Phys. Rev.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Reply to J.J. Muñoz-Perez et al. Comments on “Confirmation of beach accretion by grain-size trend analysis: Camposoto beach, Cádiz, SWSpain” by E. Poizot et al. (2013) Geo-Marine Letters 33(4)

    Get PDF
    In a novel finding for a beach environment, Poizot et al. (2013) identified an FB+ trend (sediments becoming finer, better sorted and more positively skewed upshore) on a well-developed swash bar on the upper foreshore of the Camposoto beach of Cádiz in SW Spain. In their Discussion of that paper, Muñoz-Perez et al. (2014) provide some supporting arguments and also report grain-size, beach profile and other data from nearby beaches which differ from those of Poizot and colleagues for Camposoto beach, pointing out that a trend observed on one beach may not apply to a neighbouring beach. However, even though the absolute values differ, the overall trends actually do show the same general behaviour. In our Reply to their comments, we also address some difficulties in comparing granulometric datasets generated by different analytical techniques

    Radial variation of attenuation and star formation in the largest late-type disks observed with GALEX

    Get PDF
    For a sample of 43 nearby, late-type galaxies, we have investigated the radial variation of both the current star formation rate and the dust-induced UV light attenuation. To do this we have cross-correlated IRAS images and GALEX observations for each of these galaxies, and compiled observations of the gas (CO and HI) and metal-abundance gradients found in the literature. We find that attenuation correlates with metallicity. We then use the UV profiles, corrected for attenuation, to study several variants of the Schmidt law and conclude that our results are compatible with a simple law similar to the one of Kennicutt but extending smoothly to lower surface densities, but with considerable scatter. We do not detect an abrupt break in the UV light at the threshold radius derived from H-alpha data (at which the H-alpha profile shows a break and beyond which only a few HII regions are usually found). We interpret the H-alpha sudden break not as a change in the star formation regime (as often suggested) but as the vanishingly small number of ionizing stars corresponding to low levels of star formation.Comment: 28 pages, 9 figures, accepted for the GALEX special issue of ApJS. For a version with high-resolution figures, see http://www.oamp.fr/boissier/preprint/preprint.htm

    Two-point functions in a holographic Kondo model

    Get PDF
    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)(0+1)-dimensional impurity spin of a gauged SU(N)SU(N) interacting with a (1+1)(1+1)-dimensional, large-NN, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)SU(N)-invariant scalar operator \mathcalO built from a pseudo-fermion and a CFT fermion. At large NN the Kondo interaction is of the form \mathcalO^\dagger \mathcalO, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which \mathcalO condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)(1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of \mathcalO exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)(0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form iO2-i \langle \cal O \rangle^2, which is characteristic of a Kondo resonance
    corecore