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Abstract: We develop the formalism of holographic renormalization to compute two-

point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional

impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N , strongly-

coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-

fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and

a CFT fermion. At large N the Kondo interaction is of the form O†O, which is marginally

relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-

order mean-field phase transition occurs in which O condenses below a critical temperature,

leading to the Kondo effect, including screening of the impurity. Via holography, the

phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-

de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance,

characteristic of a continuum of states interacting with an isolated resonance. In contrast

to Fano resonances observed for example in quantum dots, our continuum and resonance

arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-

temperature phase, the resonance comes from a pole in the Green’s function of the form

−i〈O〉2, which is characteristic of a Kondo resonance.
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1 Introduction and summary

The Kondo model of a magnetic impurity interacting with a Fermi liquid of electrons,

proposed by Jun Kondo in 1964 [1], has been seminal for both experimental and theoret-

ical physics. In experimental physics, the Kondo model explains the thermodynamic and

transport properties of many systems, including certain types of quantum dots [2, 3] and

certain metals doped with magnetic impurities [1, 4, 5]. Most famously, for doped metals

the Kondo model successfully describes the logarithmic rise of the electrical resistivity ρ

with decreasing temperature T . In theoretical physics, the Kondo model provides perhaps

the simplest example of a renormalization group (RG) flow exhibiting asymptotic freedom,

the dynamical generation of a scale, namely the Kondo temperature, TK , and a non-trivial

infra-red (IR) fixed point describing the screening of the impurity by the electrons. As a

result, the Kondo model has played a central role in the development of many techniques in

theoretical physics: Wilson’s numerical RG [6–8], integrability [9–16], large-N limits [17–

22], Conformal Field Theory (CFT) [23–28], and more. For reviews of many of these, see

for example refs. [29, 30].

Indeed, given the successes of these techniques, the single-impurity Kondo model is

often called a “solved problem.” However, in reality many fundamental questions about

the Kondo model remain unanswered, such as how to measure (or even define) the size of

the Kondo screening cloud, how entanglement entropy (EE) depends on the size of a spatial

subsystem, or how observables evolve after a (quantum) quench, i.e. after the Kondo model

is “kicked” far from equilibrium.

Moreover, many generalizations of the original Kondo model remain impervious to

the existing techniques. For example, what if we replace the electron Fermi liquid with

(strongly) interacting degrees of freedom, such as a Luttinger liquid? What if multiple

impurities interact not only with the electrons, but also with each other? Answers to these

questions are urgently needed to understand important experimental systems. For exam-

ple, a heavy fermion compound can be described as a dense lattice of impurities in which

the competition between the Kondo and inter-impurity interactions leads to a quantum

critical phase very similar to the “strange metal” phase of the cuprate superconductors.

Understanding the strange metal phase may be the key to understanding the mechanism

of high-temperature superconductivity. The Kondo lattice therefore remains a major un-

solved problem.

Motivated by these questions, in a series of papers we have developed an alternative

Kondo model, based on holographic duality [31–34]. Holography equates certain strongly-

interacting quantum field theories (QFTs) with weakly-coupled theories of gravity in one

higher dimension. Holography is therefore a natural tool for studying impurities coupled

to strongly-interacting degrees of freedom, and is particularly well-suited for studying EE

and far-from-equilibrium evolution.

Our holographic model is based on the large-N [17–22, 35, 36] and CFT [20, 23–28]

approaches to Kondo physics. The large-N approach involves replacing the SU(2) spin

symmetry with SU(N) and then sending N → ∞, keeping TK fixed. Following many

previous large-N Kondo models [13, 17, 20, 35, 36], we restrict to an impurity spin in a
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totally anti-symmetric representation of SU(N), whose Young tableau is a single column

with Q < N boxes, and describe the impurity spin using Abrikosov pseudo-fermions, χ,

constrained to obey χ†χ = Q. The Kondo coupling between the impurity spin and the

electrons is then of the form λO†O, where λ is the Kondo coupling constant and O = ψ†χ,

with ψ an electron. At large N , the screening of the impurity appears as the formation of

the condensate 〈O〉 6= 0 below a critical temperature Tc ' TK [13, 17, 35, 36]. We thus

refer to the phases with 〈O〉 = 0 and 〈O〉 6= 0 as “unscreened” and “screened,” respectively.

Crucially, the logarithmic rise of ρ with T , which normally occurs when T � TK , is absent

at large N . However, the large-N limit is useful at low temperatures, T ≤ TK , where λ

is large and hence conventional perturbation theory in λ breaks down. When T � TK , ρ

exhibits power-law scaling in T , with a power determined by the dimension of the leading

irrelevant operator about the IR fixed point [20, 27, 28].

The CFT approach to Kondo physics begins with the observation that the impurity

couples only to the electron s-wave spherical harmonic, so non-trivial physics only occurs

in the radial direction about the impurity [23, 25, 28]. The low-energy physics is therefore

effectively one-dimensional. Linearizing about the Fermi momentum then produces a rela-

tivistic electron dispersion relation, with the Fermi velocity playing the role of the speed of

light. The low-energy effective theory thus consists of free, relativistic fermions in one di-

mension, interacting with the impurity at the origin. That theory is a boundary CFT, which

has an infinite number of symmetry generators, namely those of a single Virasoro algebra,

plus Kac-Moody algebras for charge, spin, and channel (or flavor) [23, 28]. These infinite ac-

cidental symmetries make the CFT approach very powerful. For example, together with the

boundary conditions these symmetries determine the IR spectrum completely [23–25, 28].

The CFT approach also provides novel results for low-T scaling exponents [23–25, 27, 28].

Our holographic model combines the large-N and CFT approaches, and adds two more

ingredients. First, we gauge the SU(N) spin symmetry, so that the impurity spin becomes

an SU(N) Wilson line. Second, we make the SU(N) ’t Hooft coupling large, so that the

gauge degrees of freedom (adjoint fields) are strongly-interacting. These two ingredients

are necessary to produce a tractable gravitational dual, with a small number of light fields

in a classical limit. Indeed, all holographic quantum impurity models to date use these

two ingredients, as reviewed in refs. [31, 32].

To be specific, our holographic model includes four fields. First is an asymptotically

AdS3 metric, with Einstein-Hilbert action with negative cosmological constant, which is

dual to the stress-energy tensor. Second is a Chern-Simons gauge field, A, dual to Kac-

Moody currents, J , representing our electrons ψ. Third is a Maxwell gauge field, a, re-

stricted to a co-dimension one, asymptotically AdS2 brane, localized in the field theory

direction, and dual to the Abrikosov pseudo-fermion charge j ≡ χ†χ. Fourth is a complex

scalar field, Φ, also restricted to the brane, charged under both A and a, and dual to

O = ψ†χ. In refs. [31, 32] we treated the matter fields as probes of a BTZ black brane.

Our model is a novel impurity RG flow in both holography and condensed matter

physics. In holography, our model is novel as a holographic superconductor [37, 38] in an

AdS2 subspace of a higher-dimensional AdS space. Indeed, a general lesson of our model is

that holographic superconductors in AdS2 describe impurity screening. In condensed mat-
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ter physics, our model describes a novel impurity RG flow between two strongly-interacting

fixed points, unlike the original Kondo model, where the UV fixed point is trivial and the IR

fixed point may or may not be trivial, depending on the number of channels [24, 25, 28, 39].

More specifically, our λ runs in the same way as the original Kondo model, but our model

has a second coupling, the ’t Hooft coupling, which does not run, and is large. Our holo-

graphic model not only reproduces expected large-N Kondo physics, such as condensation

of O, screening of the charge Q, power-law scaling of ρ with T at low T [31], etc., but also

exhibits novel phenomena due to the large ’t Hooft coupling, as described below.

Indeed, using our holographic model, we have begun to address some of the open ques-

tions about Kondo physics. For example, in ref. [32], we introduced a second impurity in

our holographic model, as a first step towards building a holographic Kondo lattice. We

found evidence that the competition between Kondo and inter-impurity (RKKY) inter-

actions may lead to a quantum phase transition. In ref. [33] we calculated the impurity

entropy in our holographic model, by calculating the change in EE due to the impurity,

for an interval of length ` centered on the impurity. Calculating the EE holographically

required calculating the back-reaction of the AdS2 matter fields on the metric [33, 40]. The

impurity screening reduced the impurity entropy, i.e. reduced the number of impurity de-

grees of freedom, consistent with the g-theorem [26, 41]. On the gravity side, the reduction

in degrees of freedom appeared as a reduction in the volume of the bulk spacetime around

the AdS2 brane, similar to the deficit angle around a cosmic string. Furthermore, at low T

the EE decayed exponentially in ` as ` increased. The decay rate provides one definition of

the Kondo screening length, which made a particularly intuitive appearance in the gravity

theory, as a distance the AdS2 brane “bends.”

In this paper, we take a first step toward addressing another major open problem in

Kondo physics: out-of-equilibrium evolution. In particular, we work in the probe limit, and

compute response functions, namely the retarded Green’s functions involving O, j, and J ,

in the regime of linear response to small, time-dependent perturbations. We then compute

the spectral functions, i.e. the anti-Hermitian parts of the retarded Green’s functions. We

also separately calculate the poles in the Green’s functions, dual to the quasi-normal modes

(QNMs) of the fields in the BTZ black brane background. Generically, these poles give rise

to peaks in the spectral functions.

We presented some of our results in a companion paper [42]. In this paper we will

present full details of calculations and further results. In particular, we have three main

results.

Our first main result is technical: we perform the holographic renormalization (holo-

ren) [43–53] of our model. The main challenge here is the well-known fact that a YM field

diverges near the asymptotically AdS2 boundary, unlike YM fields in higher-dimensional

AdS spaces. That divergence can alter the asymptotics of fields coupled to the YM field,

and indeed alters the asymptotics of our field Φ. The asymptotic region is dual to the UV

of the field theory [54], so we learn that in our holographic model j acts like an irrelevant

operator, and in particular, changing the value of 〈j〉, which controls the impurity’s spin,

changes the dimension of O at the UV fixed point. Such behavior does not occur in

non-holographic Kondo models, and so, by process of elimination, must be due to the
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strongly-interacting degrees of freedom we added. Strong-coupling effects can also appear

in the IR, for example the leading irrelevant operator about the IR fixed point likely has

non-integer dimension [31].

Our holo-ren draws from, and extends, several previous examples of holo-ren: for fields

dual to irrelevant operators [55, 56], for our holographic two-impurity Kondo model [32],

and for asymptotically conical (rather than asymptotically AdS) black holes [57]. The

holo-ren provides covariant boundary counterterms, enabling us to compute renormalized

correlators, including the thermodynamic free energy and two-point functions. The holo-

ren also allows us to identify the Kondo coupling λ from a boundary condition on Φ [31–34].

As in many large-N Kondo models, our holographic model exhibits a large-N , second-

order, mean-field phase transition [31–34]. For all T , one class of static solutions obeying

the boundary conditions includes Φ = 0, dual to the unscreened phase, with 〈O〉 = 0.

When T ≤ Tc, another class of solutions appears, with Φ 6= 0, dual to the screened phase,

with 〈O〉 6= 0. For all T ≤ Tc, the Φ 6= 0 solution has lower free energy than the Φ = 0

solution, so a phase transition occurs at Tc, with mean-field exponent: for T just below Tc,

〈O〉 ∝ (Tc − T )1/2 [31].

In the unscreened phase, the holo-ren reveals that the only non-trivial retarded Green’s

function in our model is 〈O†O〉, with all other one- and two-point functions completely

determined by 〈O〉, the Ward identities for the currents j and J , and the particle-hole

transformation Q → N −Q. For example, 〈OO†〉 can be obtained from 〈O†O〉 by taking

Q → N −Q. We denote 〈O†O〉’s Fourier transform as GO†O, which we compute as a func-

tion of complex frequency ω, and the associated spectral function as ρO†O ≡ −2 ImGO†O,

which we compute for real ω. We are able to compute GO†O analytically, by obtaining an

exact solution to Φ’s Klein-Gordon equation (with gauge covariant derivatives) in AdS2,

with boundary condition involving the Kondo coupling λ.

The defect’s asymptotic AdS2 isometry is dual to a (0 + 1)-dimensional conformal

symmetry. When T > Tc, the only breaking of that conformal symmetry is through T and

the running of λ. For static solutions, we can approach the UV fixed point by sending

T → ∞, which also sends λ → 0 due to asymptotic freedom. When λ → 0, Φ’s boundary

condition reduces to Dirichlet [31, 32], guaranteeing that GO†O indeed takes the form

required by (0 + 1)-dimensional conformal symmetry [58, 59].

More generally, our model falls into one of the three known classes of models whose

large-N fixed points exhibit (0 + 1)-dimensional conformal symmetry. The first are holo-

graphic AdS2 models, such as our model. The second are large-N quantum impurity mod-

els, including large-N Kondo models (without holography) [20]. The third are so-called

Sachdev-Ye-Kitaev (SYK) models, namely fermions on a lattice without kinetic terms and

with long-range many-body interactions, in a large-N limit [59–73]. For all three classes,

(0+1)-dimensional conformal symmetry completely determines any Green’s function, such

as GO†O, in terms of scaling dimension and global symmetry charges [59, 67, 74].

However, in our model, as T decreases and λ grows, (0 + 1)-dimensional conformal

symmetry is broken. As T → Tc from above, in the complex ω-plane the lowest pole in

GO†O, meaning the pole closest to the origin, which we denote ω∗, moves towards the

origin. When T = Tc, ω
∗ reaches the origin, and when T < Tc, ω

∗ moves into the upper
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half of the complex ω plane, signaling the instability of the unscreened phase when T < Tc,

as expected [31]. In contrast, in the standard (non-holographic) Kondo model, at large N

and at leading order in perturbation theory in λ, the lowest pole sits exactly at the origin

of the complex ω plane for all T ≥ Tc [75]. By process of elimination, our results for the

movement of ω∗ must arise from the additional degrees of freedom of our holographic model,

and in particular must be a strong coupling effect, since we do not rely on perturbation

theory in either λ or the ’t Hooft coupling.

A pole in a retarded Green’s function (for complex ω) leads to a peak in the associated

spectral function (for real ω). Our second main result is for ρO†O in the unscreened phase:

ω∗ produces the only significant feature in ρO†O, namely a peak, and specifically a Fano

resonance. Fano resonances occur when one or more resonance appears within a continuum

of states (in energy). In such cases, scattering states have two options: they can either scat-

ter off the isolated resonance(s) (resonant scattering), or they can bypass these resonances

(non-resonant scattering). The classic example is light scattering off the excited states of an

atom. In spectral functions, the interference between the two options leads to a Fano reso-

nance, which generically is asymmetric, with a minimum and a maximum (see figure 2 (a)),

and is determined by three parameters: the position, the width, and the Fano or asymmetry

parameter, q, which controls the distance between the minimum and maximum. In physical

terms, q2 is proportional to the probability of resonant scattering over the probability of

non-resonant scattering. For an introduction to Fano resonances, see for example ref. [76].

In our case, the continuum comes from the (0 + 1)-dimensional fixed point dual to the

AdS2 subspace, where the scale invariance implies any spectral function must be power

law in ω, i.e. a continuum. Our resonance arises from our relevant deformation, i.e. our

Kondo coupling, which necessarily breaks scale invariance. Moreover, the asymmetry of

our Fano resonances is possible because particle-hole symmetry is generically broken when

|Q −N/2| 6= 0.

We expect asymmetric Fano resonances in any system with the same three ingredients,

namely an effectively (0+1)-dimensional UV fixed point, resonances that appear when scale

invariance is broken, and particle-hole symmetry breaking. In fact, Fano resonances have

appeared in such systems, though they are often not identified as such. For example, Fano

resonances appear in spectral functions of charged bosonic operators in the non-holographic

large-N Kondo model [20] and in holographic duals of extremal AdS-Reissner-Nordstrom

black branes, whose near-horizon geometry is AdS2 [58, 59, 77]. Indeed, we expect Fano

resonances in AdS2 models generically, such as Sachdev-Ye-Kitaev models [59–62, 66, 73],

if some deformation breaks scale invariance and produces a resonance. Specifically (0 + 1)

dimensions is special because any resonance must necessarily be immersed in a continuum,

unlike higher dimensions, where the two may be separated in momentum and/or real space.

Fano resonances have been produced experimentally in side-coupled QDs [76, 78], that

is, by coupling the discrete states in a QD to a continuum of states in a quantum wire.

Crucially, however, in these cases (0 + 1)-dimensional scale invariance apparently plays no

role: before the coupling between QD and quantum wire, spectral functions on the QD

would be a sum of Lorentzians, not a scale-invariant continuum. Our Fano resonances

therefore have a different physical origin from those in QDs, and are more characterisitc of

(0 + 1)-dimensional fixed points, as explained above.

– 6 –
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In the screened phase, the symmetry breaking condensate 〈O〉 6= 0 induces operator

mixing, so that generically all two-point functions are non-trivial. However, the holo-ren

shows that all four scalar correlators are equivalent: GO†O = GOO† = GOO = GO†O† , so

we will discuss only GO†O, which we compute numerically. Our third main result is: in

the screened phase, the lowest pole in GO†O, ω∗, is purely imaginary, and moves down the

imaginary axis as T decreases. In fact, ω∗ ∝ −i〈O〉2 for T just below Tc. The spectral

function ρO†O then exhibits a Fano resonance symmetric under ω → −ω.

This result is consistent with expectations from the standard (non-holographic) Kondo

model. At finite N , an essential feature of the Kondo effect is the Kondo resonance, a peak

in the spectral function of the conduction electrons, with five characteristic features. First,

for all T the peak is localized in energy exactly at the Fermi energy. Second, for all T the

peak is localized in real space at the impurity. Third, as T approaches TK from above,

the peak’s height rises logarithmically in T . Fourth, when T reaches TK , the peak’s height

saturates and remains for all lower T at a value fixed by the impurity’s representation (the

Friedel sum rule). Fifth, as T drops below TK and then continues to decrease, the peak

narrows, and at T = 0 has width ∝ TK . The Kondo resonance is a many-body effect (i.e. is

not obvious from the Kondo Hamiltonian) signaling the emergence of the highly-entangled

state in which the conduction electrons act collectively to screen the impurity. For more

details about the Kondo resonance, see for example the textbooks refs. [29, 75, 79].

The features of the Kondo resonance change in the large-N limit, as explained in

ref. [75] and references therein. In particular, the Kondo resonance is absent in the un-

screened phase (T > Tc), and appears only in the screened phase (T < Tc). If we introduce

Abrikosov pseudo-fermions χ, then due to operator mixing induced by 〈O〉 6= 0, the Kondo

resonance can be transmitted from the electron spectral function to other spectral functions.

In particular, in GO†O the Kondo resonance appears as a pole of the form ω ∝ −i〈O〉2.

As mentioned above, for T just below Tc, we indeed find a pole in GO†O of precisely that

form, providing compelling evidence for a Kondo resonance in our model.

This paper is organized as follows. In section 2 we review our holographic Kondo

model. In section 3 we perform the holo-ren of our model. In section 4 we review Fano

resonances. We present our results for the unscreened phase in section 5, and for the

screened phase in section 6. We conclude in section 7 with discussion of our results and

suggestions for future research.

2 Review: holographic Kondo model

As mentioned above, our holographic model combines the CFT and large-N approaches

to the Kondo effect. In this section we will review these briefly and then introduce the

action and equations of motion of our holographic model, and the transition between the

unscreened to screened phases. For more details on the CFT, large-N , and holographic

approaches to the Kondo effect, see refs. [31–34].

The CFT approach to the Kondo effect [23–28] begins with a (1 + 1)-dimensional

effective description: relativistic fermions that are free except for a Kondo interaction with

the impurity at the boundary of space. In that description, left-moving fermions “bounce
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off” the boundary and become right-moving, interacting with the impurity in the process.

By extending the half line to the entire real line, reflecting the right-movers to the “new”

half of the real line, and re-labeling them as left-movers, we obtain a simpler description:

left-movers alone, interacting with the impurity at the origin. The Hamiltonian (density)

is then, in units where the Fermi velocity acting as speed of light is unity,

H =
1

2π
ψ†αi∂xψα + λ δ(x)SAψ†αT

A
αβψβ , (2.1)

where ψ†α creates a left-moving electron with spin α, λ is the classically marginal Kondo

coupling, TAαβ are the generators of the SU(2) spin symmetry (A = 1, 2, 3) in the fundamen-

tal representation, and SA is the spin of the impurity, which is localized at x = 0, hence

the δ(x). The left-moving fermions form a chiral CFT, invariant under a single Virasoro

algebra as well as SU(2)1 and U(1) Kac-Moody algebras, representing spin and charge,

respectively (the U(1) acts by shifting ψα’s phase). With k > 1 channels of fermions, the

Kac-Moody algebra is enhanced to SU(2)k × SU(k)2 ×U(1).

The one-loop beta function for λ is negative. As a result, a non-trivial RG flow occurs

only for an anti-ferromagnetic Kondo coupling, λ > 0. Due to asymptotic freedom, the

UV fixed point is a trivial chiral CFT, namely free left-moving fermions and a decoupled

impurity. The Virasoro and Kac-Moody symmetries and (trivial) boundary conditions

then determine the spectrum of eigenstates completely [23–25, 28]. The IR fixed point will

again be a chiral CFT, whose spectrum of eigenstates can be obtained from those in the

UV by fusion with the impurity representation [24].

Our holographic Kondo model will also employ a large-N limit [17–22], which is based

on replacing the SU(2) spin symmetry with SU(N) and then sending N → ∞ with Nλ

fixed. In particular, we will employ the large-N description of the Kondo effect as symmetry

breaking at the impurity’s location [13, 17, 35, 36], which begins by writing SA in terms

of Abrikosov pseudo-fermions,

SA = χ†αT
A
αβχβ , (2.2)

where χ†α creates an Abrikosov pseudo-fermion. We construct a state in the impurity’s

Hilbert space by acting on the vacuum with a number Q of the χ†α. Because the χ†α anti-

commute, such a state will be a totally anti-symmetric tensor product of the fundamental

representation of SU(N) with rank Q. To obtain an irreducible representation, we must

fix the rank Q by imposing a constraint,

χ†αχα = Q. (2.3)

Due to the anti-commutation, Abrikosov pseudo-fermions can only describe totally anti-

symmetric representations of SU(N), so that Q ∈ {0, 1, 2, . . . , N}. Following our earlier

work [31–34], we will only consider totally anti-symmetric impurity representations.

Plugging eq. (2.2) into the Kondo interaction term in eq. (2.1), and using χα’s anti-

commutation relations as well as the completeness relation satisfied by the fundamental-

representation SU(N) generators,

TAαβT
A
γδ =

1

2

(
δαδδβγ −

1

N
δαβδγδ

)
, (2.4)
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we can re-write the Kondo interaction as

λSAψ†γT
A
γδψδ = λ

(
χ†αT

A
αβχβ

)(
ψ†γT

A
γδψδ

)
=

1

2
λ

(
−O†O +Q− Q

N

(
ψ†αψα

))
, (2.5)

where the scalar operator O ≡ ψ†αχα is (0 + 1)-dimensional, i.e. is a function of time t

only, because χα cannot propagate away from the impurity’s location, x = 0. Clearly, O
is a singlet of the spin SU(N)k symmetry, is in the same SU(k)N ×U(1) representation as

ψ†α, and has the same auxiliary U(1) charge as χα. Classically ψα has dimension 1/2 and

χα has dimension zero, so O has dimension 1/2. The Kondo interaction eq. (2.5) is thus

classically marginal, i.e. λ is classically dimensionless.

We can introduce Abrikosov pseudo-fermions for any N , but let us now take the large-

N limit. In eq. (2.5) the Q and (Q/N)ψ†αψα terms are then sub-leading in N relative

to the O†O term, so the Kondo interaction reduces to −λO†O/2. The solution of the

large-N saddle point equations reveals a second-order mean-field phase transition: below

a critical temperature Tc, on the order of but distinct from TK, 〈O〉 6= 0 [13, 17, 35, 36],

spontaneously breaking the channel symmetry down to SU(k−1) and the U(1) charge and

U(1) auxiliary symmetry down to the diagonal U(1). Of course, spontaneous symmetry

breaking in (0 + 1) dimensions is impossible for finite N : the phase transition is an artifact

of the large-N limit. Corrections in 1/N change the phase transition to a smooth cross-

over [13]. The large-N limit describes many characteristic phenomena of the Kondo effect

only when T ≤ Tc, where 〈O〉 6= 0, including the screening of the impurity by the electrons,

and a phase shift of the electrons.

As described in section 1, to obtain a classical Einstein-Hilbert holographic Kondo

model, we want to combine the CFT and large-N approaches and gauge the SU(N)k spin

symmetry, which introduces the ’t Hooft coupling, which we want to be large. Of course, the

SU(N)k symmetry is anomalous, and so should not be gauged. To suppress the anomaly,

we work in the probe limit: when N → ∞ we hold k fixed, so that k � N , and then

compute expectation values only to order N . In the probe limit the SU(N)k anomaly does

not appear [31, 80], so that in effect SU(N)k → SU(N).

Each SU(N)-invariant, single-trace, low-dimension (i.e. dimension of order N0) opera-

tor is dual to a field in the gravity dual. The stress-energy tensor is dual to the metric. The

SU(N) currents are not SU(N)-invariant, and hence have no dual fields. The SU(k)N×U(1)

Kac-Moody currents are dual to an SU(k)N × U(1) Chern-Simons gauge field [81], which

we call A. The U(1) charge j = χ†αχα is dual to a U(1) gauge field, which we call a,

localized to x = 0. The complex scalar O is bi-fundamental under SU(k)N ×U(1) and the

U(1) with charge j, and is dual to a complex scalar field, Φ, also localized to x = 0, and

bi-fundamental under A and a. For simplicity, following refs. [31–34] we will take k = 1, so

that the SU(k)N ×U(1) Kac-Moody symmetry reduces to U(1). The Chern-Simons gauge

field A is then Abelian, with field strength F = dA. Similarly, a has field strength f = da.

To describe a (1 + 1)-dimensional CFT with non-zero T , we use the BTZ black brane

metric (with asymptotic AdS3 radius set to unity),

ds2
BTZ =

1

z2

(
1

h(z)
dz2 − h(z)dt2 + dx2

)
, h(z) = 1− z2

z2
H

, (2.6)
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where z is the radial coordinate, with the boundary at z = 0 and horizon at z = zH , t

and x are the CFT time and space directions, and µ, ν = z, t, x. The CFT’s temperature

is dual to the black brane’s Hawking temperature, T = 1/(2πzH). The fields a and Φ are

localized to x = 0, i.e. to the submanifold spanned by t and z, whose induced metric is

asymptotically AdS2,

ds2
AdS2

= gmndx
mdxn =

1

z2

(
1

h(z)
dz2 − h(z)dt2

)
, (2.7)

where m,n = t, z. The determinant of the metric in eq. (2.7) is g = −1/z4.

The classical action of the holographic Kondo model of refs. [31–34] is the simplest

action quadratic in the fields. We will split the bulk action into two terms, namely the

Chern-Simons action for A, SCS, and the bulk terms for the fields in the asymptotically

AdS2 submanifold, SAdS2 ,

S = SCS + SAdS2 , (2.8a)

SCS = −N
4π

∫

AdS3

A ∧ dA, (2.8b)

SAdS2 = −N
∫

AdS2

d2x
√−g

[
1

4
fmnfmn + (DmΦ)† (DmΦ) +M2Φ†Φ

]
, (2.8c)

where Dm is a gauge-covariant derivative,

DmΦ = (∂m + iAm − iam) Φ, (2.9)

and M2 is Φ’s mass-squared. We will discuss the value of M2, and the boundary terms that

must be added to S for holo-ren, in section 3. We will also discuss the equations of motion

following from eq. (2.8), and their solutions, in detail in section 3. In the remainder of this

section we will focus on features of the equations of motion and their solutions relevant for

our model’s phase structure.

We split Φ into a modulus and phase, Φ = eiψφ. Furthermore, throughout this paper

we work in a gauge with Az = 0 and az = 0. As shown in refs. [31–34], a self-consistent

gauge choice and ansatz that can describe a static state with Q 6= 0 and possibly 〈O〉 6= 0

includes Ax(z), at(z), and φ(z), with all other fields set to zero. The equations of motions

for these fields are

∂zAx = −4πδ(x)
√−g gtt at φ2, (2.10a)

∂z
(√−g gzzgtt ∂zat

)
= 2
√−g gtt at φ2, (2.10b)

∂z
(√−g gzz ∂zφ

)
=
√−g gtt a2

t φ+
√−gM2 φ. (2.10c)

Crucially, Ax(z) does not appear in at(z) or φ(z)’s equation of motion, eqs. (2.10b)

and (2.10c). As a result, the only way that at(z) and φ(z) “know” they live on a defect

in a higher-dimensional spacetime is through the blackening factor, h(z). In particular,

if T = 0 then the defect’s metric is precisely that of AdS2. Moreover, Ax(z) has trivial
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Figure 1. (a) The free energy F , normalized by 1/ (N(2πT )), as a function of T/Tc for Q = 0.5.

The solid line is for the unscreened phase, where 〈O〉 = 0, and which has F/ (N(2πT )) = −Q2/2 =

−0.125. The dots represent our numerical results for the screened phase, where 〈O〉 6= 0. Clearly

the screened phase always has lower F , and hence is thermodynamically preferred, for all T ≤ Tc.

(b) The dots are our numerical results for κ
2N 〈O〉/

√
Tc as a function of T/Tc in the screened phase

with Q = 0.5. The solid line is a numerical fit to 0.30 (Tc − T )
1/2

. The agreement between the

numerical results and the fit indicates second-order mean field behavior, 〈O〉 ∝ (Tc − T )
1/2

.

dynamics (as expected for a Chern-Simons gauge field): we only need to solve for at(z)

and φ(z), and then insert those solutions into eq. (2.10a) to obtain Ax(z).

As mentioned in section 1, our holographic Kondo model exhibits a phase transition

as T decreases through a critical temperature Tc, just like the standard (non-holographic)

Kondo model at large N . For any T , eqs. (2.10b) and (2.10c) admit the solution

at(z) = µ−Q/z and φ(z) = 0. These solutions are dual to states with 〈O〉 = 0. However,

when T ≤ Tc a second branch of solutions exists that have φ(z) 6= 0. Given that φ(z)

is dual to O† + O, these φ(z) 6= 0 solutions are dual to states with 〈O† + O〉 6= 0,

which implies 〈O†〉 = 〈O〉 = 〈O† + O〉/2 6= 0. We will therefore just refer to 〈O〉 6= 0

henceforth. To determine which state is thermodynamically preferred, we must determine

which state has lower free energy F , which we compute holographically from the on-shell

Euclidean action: for details, see refs. [31–34]. Figure 1 (a) shows F/ (N(2πT )) as a

function of T/Tc for Q = 0.5, for the two branches of solutions. Clearly the solution

with φ(z) 6= 0 has lower F , and hence is thermodynamically preferred, for all T ≤ Tc.

Figure 1 (b) shows our numerical results for κ/(2N)〈O〉/√Tc as a function of T/Tc for

Q = 0.5, where κ is our holographic Kondo coupling constant, defined in the boundary

term eq. (3.61). Figure 1 (b) also shows a numerical fit revealing second-order mean-field

behavior: 〈O〉 ∝ (Tc − T )1/2 when T . Tc. Clearly our model exhibits a second-order

mean-field transition when T drops through Tc. In section 5 we will show Tc ∝ TK , where

the proportionality constant depends only on Q: see in particular figure 6.

As mentioned above, at large N the screening of the impurity, and other characteristic

Kondo phenomena, such as a phase shift of the electrons, occurs only when T ≤ Tc, where

〈O〉 6= 0. We will thus refer to states with 〈O〉 = 0 as the unscreened phase and states

with 〈O〉 6= 0 as the screened phase.
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What does the screening look like on the gravity side of the correspondence? The flux of

at(z) controls the “size” of the impurity’s representation, by controlling the number of boxes

in the associated Young tableau. To see how, consider the at(z)’s general asymptotic form,

at(z) = µ−Q/z + . . ., where . . . represents terms that vanish as z → 0. The parameter µ

acts as a chemical potential for j = χ†χ, and in particular a non-zero µ breaks particle-hole

symmetry. The particle-hole symmetric value of the charge is Q = N/2, which thus corre-

sponds to µ = 0. In general the parameter Q depends monotonically on µ. For example, for

the solution at(z) = µ−Q/z mentioned above, regularity of at(z) at the horizon, at(zH) = 0,

requires Q = µzH . As a result, Q = 0 corresponds to Q = N/2, while Q > 0 corresponds

to Q > N/2, and Q < 0 corresponds to Q < N/2. A totally anti-symmetric representation

must have 0 ≤ Q ≤ N , which should translate to limits on Q. Our model is too crude to

determine the exact relation between Q and Q, and includes nothing to impose limits on Q,

although these features could potentially be incorporated, following similar models [82–85].

They only feature we will need, however, is that Q is monotonically related to Q−N/2.

For any solution, the flux of at(z) at the boundary is Q. When φ(z) = 0, the flux of

at(z) is constant from the boundary to the horizon. However, when φ(z) 6= 0, the flux of

at(z) is transferred from at(z) to Ax(z), because Φ is bi-fundamental. Recalling that the

holographic coordinate z corresponds to energy scale, where the boundary corresponds to

the UV and increasing z corresponds to moving towards the IR [86, 87], solutions with

φ(z) 6= 0 thus describe an impurity whose size shrinks as we move towards the IR [31]. In

other words, the impurity is screened, as advertised.

What does the phase shift look like on the gravity side of the correspondence? The

phase shift is encoded in Ax(z) [31]. In particular, eq. (2.10a) shows that ∂zAx(z) 6= 0 if

and only if both at 6= 0 and φ(z) 6= 0. If we imagine compactifying x into a circle, then

Ax(z) 6= 0 implies a non-zero Wilson loop around the x direction,
∮
A 6= 0, which is dual to

a phase shift for our strongly-coupled “electrons,” or more generally for any object charged

under our U(1) channel symmetry. Non-zero ∂zAx(z) means the phase shift grows as we

move towards larger z, i.e. as we move towards the IR, as expected.

In short, our holographic model captures some of the essential phenomena of the large-

N Kondo effect, namely impurity screening and a phase shift at T ≤ Tc, when 〈O〉 6= 0.

In the following we will show that our holographic model also captures another essential

phenomenon: the Kondo resonance.

3 Holographic renormalization and two-point functions

In this section we derive general expressions for the renormalized holographic two-point

functions of the Kondo model described by the action in eq. (2.8), in both the unscreened

and screened phases. Before we embark on the technical aspects of this calculation, it is

instructive to outline the main steps involved, and to highlight several subtleties that this

specific model presents.

A particularly economical way of computing holographic two-point functions is to read

them off directly from the linearized fluctuation equations, bypassing the usual step of eval-

uating the on-shell action to quadratic order in the fluctuations. This is possible due to the
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holographic identification of the radial canonical momenta, which on-shell become func-

tions of the induced fields, with the one-point functions of the dual operators in the theory

with Dirichlet boundary conditions [51]. To obtain the two-point functions it suffices to

expand the canonical momenta to linear order in the induced fields. As in standard linear

response theory, the coefficients of the linear terms in this expansion are identified with the

corresponding response functions, i.e. the unrenormalized two-point functions [88]. Insert-

ing the covariant expansions of the canonical momenta to linear order in the fluctuations

in the second order fluctuation equations results in a system of first order non-linear Ric-

cati equations for the response functions [88, 89]. Like the system of second order linear

equations for the fluctuations, the system of Riccati equations for the response functions

is generically coupled, and can only be solved numerically. However, in contrast to the

second order linear equations, the general solution of the Riccati equations contains only

one integration constant per response function, since the arbitrary sources have already

been eliminated, which is determined by imposing regularity in the bulk of the spacetime.

Generically, the fact that the arbitrary sources have been eliminated from the Riccati

equations renders them better suited for a numerical evaluation of the two-point functions.

Both the on-shell action and the response functions obtained from the Riccati equa-

tions are generically divergent and need to be evaluated with a radial cutoff near the AdS

boundary. Moreover, local covariant boundary counterterms need to be determined in order

to renormalize these quantities. However, two important subtleties arise in obtaining the

correct boundary counterterms in our holographic Kondo model, both directly related to

the special asymptotic behavior of the AdS2 gauge field. In contrast to gauge fields in AdS4

and above, in AdS3 and AdS2 the asymptotically leading mode of an abelian gauge field is

the conserved charge Q, instead of the chemical potential, µ [90]. The same phenomenon is

observed with higher rank antisymmetric p-forms in higher dimensions [91]. In such cases,

consistency of the boundary counterterms requires that they be a function of the canonical

momentum conjugate to the gauge field, rather than the gauge field itself [57, 90].

Moreover, the requirement that the charge Q be kept fixed leads to an asymptotic

second class constraint in phase space, which further complicates the computation of the

boundary counterterms [90]. Relaxing the constraint, i.e. changing the value of Q in this

case, changes the form of the asymptotic solutions for the scalar field. In order to have

a well-defined space of asymptotic solutions, therefore, we must restrict the phase space

asymptotically to the subspace defined by constant Q. However, if we want to compute

correlation functions of the operator dual to Q, which as we will discuss later is not a local

operator, then we must allow for infinitesimal deformations away from the asymptotic

constraint surface. The boundary counterterms then take the form of a Taylor expansion

in the infinitesimal deformation away from the constraint surface, with the coefficient of

the n-th power renormalizing the n-point function of the operator dual to Q.

In our holographic Kondo model, a further complication arises due to the double-trace

boundary conditions we need to impose on the scalar field in order to introduce the Kondo

coupling. The response functions obtained directly from the Riccati equations correspond

to the two-point functions in the theory defined by Dirichlet boundary conditions on the

scalar field and Neumann boundary conditions on the AdS2 gauge field, i.e. keeping Q
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fixed. In the large-N limit, however, the renormalized two-point functions in the theory

with double-trace boundary conditions on the scalar field are algebraically related to

those in the theory with Dirichlet boundary conditions on the scalar field. The precise

relation is obtained by identifying additional finite boundary terms required to impose

the double-trace boundary condition on the scalar field, and then carefully examining the

variational problem.

In this section we will address all the above subtleties as we go along. We start

by reformulating the Kondo model in eq. (2.8) in radial Hamiltonian formalism, which

allows us to introduce the radial canonical momenta, the linear response functions,

and the Hamilton-Jacobi equation we must solve in order to determine the boundary

counterterms. We then proceed to derive the Riccati equations for the linear response

functions, determine their general asymptotic solutions in the UV (i.e. near the asymp-

totically AdS boundary), and determine the most general regular asymptotic solution

in the IR (i.e. deep in the bulk). The arbitrary integration constants appearing in the

UV expansions parameterize the renormalized two-point functions, and their value is

determined by matching the solution, numerically, to the regular asymptotic solution in

the IR. Subsequently we determine the boundary counterterms necessary to renormalize

the free energy, as well as the one- and two-point functions in the theory with Dirichlet

boundary conditions on the scalar field. Finally, the renormalized two-point functions

with a non-zero Kondo coupling are obtained by adding further boundary terms that

implement the double-trace boundary condition on the scalar field.

3.1 Radial Hamiltonian formulation of the Kondo model

To describe our holographic Kondo model in radial Hamiltonian language, we re-write the

induced metric in eq. (2.7) in the form

ds2
AdS2

= dr2 + γ dt2, (3.1)

where the radial coordinate z of eq. (2.7) is related to the canonical radial coordinate r of

eq. (3.1) as

r = log
(

1 +
√

1− z2/z2
H

)
− log(2z), (3.2)

with r ∈ [rH ,+∞), and rH = − log(2zH), and asymptotically, γ = −e2r+O(1) as r → +∞.

In these coordinates the action in eq. (2.8) may be written as

S = −N
4π

∫
d2x ε̄ij(−AiȦj + 2Ar∂[iAj])

−N
∫

dt
√−γ

(
1

2
γ−1f2

rt + |DrΦ|2 + γ−1|DtΦ|2 +M2Φ†Φ

)
, (3.3)

where (i, j) = (t, x), a dot denotes differentiation with respect to r, Ȧj ≡ ∂rAj , and

ε̄ij ≡ εzij . From eq. (3.3) we obtain the radial canonical momenta:

πiA =
δS

δȦi
= −N

4π
ε̄ijAj , πta =

δS

δȧt
= −N√−γ γ−1(ȧt − ∂tar),

πΦ =
δS

δΦ̇
= −N√−γ (DrΦ)†, πΦ† =

δS

δΦ̇†
= −N√−γ DrΦ. (3.4)
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In terms of the modulus and phase, Φ = eiψφ, the scalar field’s canonical momenta become

πφ =
δS

δφ̇
= −2N

√−γ φ̇, πψ =
δS

δψ̇
= −2N

√−γ φ2(Ar − ar + ψ̇). (3.5)

No radial derivatives of the components ar and Ar appear in eq. (3.3), so they correspond

to non-dynamical Lagrange multipliers. Moreover, the canonical momentum of the Chern-

Simons field in eq. (3.4) amounts to a primary constraint, which implies that the canonical

momentum and the gauge connection Ai are not independent variables on phase space.

The Legendre transform of the action in eq. (3.3) gives the radial Hamiltonian,

H =

∫
d2xȦiπ

i
A +

∫
dt(ȧtπ

t
a + φ̇πφ + ψ̇πψ)− S

=

∫
d2x Ar

(
−πψδ(x) +

N

4π
ε̄ij2∂[iAj]

)
+

∫
dt ar

(
−∂tπta + πψ

)

− 1

N

∫
dt

1√−γ

(
1

2
γ(πta)

2 +
1

4
π2
φ +

1

4
φ−2π2

ψ

)

+N

∫
dt
√−γ

(
γ−1(∂tφ)2 + γ−1φ2(At − at + ∂tψ)2 +M2φ2

)
. (3.6)

Hamilton’s equations for the non dynamical fields ar and Ar result in the first class

constraints

πψ = i(ΦπΦ − Φ†πΦ†) = ∂tπ
t
a,

N

4π
ε̄ij2∂[iAj] = −2 ∂iπ

i
A = πψδ(x), (3.7)

which reflect the U(1) gauge invariances associated with the AdS2 and Chern-Simons gauge

fields, respectively. We will see below that these constraints lead to Ward identities in the

dual field theory.

Hamilton-Jacobi theory connects the canonical momenta with the regularized on-shell

action S through the relations1

πiA =
δS
δAi

, πta =
δS
δat

, πΦ =
δS
δΦ

, πΦ† =
δS
δΦ†

, (3.8)

or for the modulus and phase of the scalar field, πφ = δS
δφ and πψ = δS

δψ . The regularized on-

shell action S, also known as Hamilton’s principal function in this context, is identified via

the holographic dictionary with the regularized generating function of connected correlation

functions in the theory defined by Dirichlet boundary conditions on the scalar and Chern-

Simons fields, and Neumann boundary conditions on the AdS2 gauge field. The canoni-

cal momenta, therefore, correspond to the regularized one-point functions with arbitrary

sources. The regularized two-point functions are thus obtained by differentiation of the

canonical momenta with respect to the induced fields. As we will see in the next subsection,

1The expression in eq. (3.4) for the Chern-Simons momentum implies that S cannot be a local covariant

functional of Ai. This is consistent with the fact that Ai parameterizes the full phase space, and only a

particular component of Ai, depending on the boundary conditions, will be identified with the source of

the dual current operator.
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this property allows us to rewrite the fluctuation equations in terms of Riccati equations,

which are first order, and whose solution gives directly the regularized two-point functions.

Since S is identified with the regularized on-shell action as a function of the induced

fields on a radial cutoff, its divergent asymptotic form determines the boundary coun-

terterms that are required to renormalize the theory. The asymptotic form of S can be

determined in covariant form by solving the radial Hamilton-Jacobi equation

H +
∂S
∂r

= 0 ⇔ H + γ̇
δS
δγ

= 0, (3.9)

or more explicitly

− 1

N

∫
dt

1√−γ

(
1

2
γ

(
δS
δat

)2

+
1

4

(
δS
δφ

)2

+
1

4
φ−2

(
δS
δψ

)2
)

+N

∫
dt
√−γ

(
γ−1(∂tφ)2 + γ−1φ2(At − at + ∂tψ)2 +M2φ2

)
+ γ̇

δS
δγ

= 0, (3.10)

together with the two constraints

δS
δψ

= ∂t

(
δS
δat

)
, δ(x)

δS
δψ

=
N

4π
ε̄ij 2 ∂[iAj] = −2 ∂i

(
δS
δAi

)
, (3.11)

which reflect the U(1) gauge invariances associated with the AdS2 and Chern-Simons gauge

fields, respectively.

3.2 Linear response functions from Riccati equations

In this subsection we use the relation between the radial canonical momenta and the one-

point functions in order to rewrite the second order fluctuation equations in the form of

Riccati equations, which are first order. For convenience, we will work with the complex

scalar field Φ and its complex conjugate Φ†, rather than its modulus and phase. In the

coordinates of eq. (3.1), and in the radial gauge Ar = ar = 0, the equations of motion

associated with the action in eq. (3.3) are

1

2π
ε̄ij∂iAj + δ(x)

√−γ Jr = 0, (3.12a)

1

2π
ε̄ijȦj − δ(x)δit

√−γ γ−1Jt = 0, (3.12b)

∂r(
√−γ γ−1ȧt) +

√−γ γ−1Jt = 0, (3.12c)

γ−1∂tȧt − Jr = 0, (3.12d)

∂r(
√−γ Φ̇) +

√−γγ−1 (∂t + i(At − at))2 Φ−√−γM2Φ = 0, (3.12e)

where we have defined a current associated with Φ,

Jm ≡ −i
(

Φ†DmΦ− (DmΦ)†Φ
)
. (3.13)

We solve first for the Chern-Simons gauge field. Eliminating Jr from eqs. (3.12a)

and (3.12d) and Jt from eqs. (3.12b) and (3.12c), results respectively in the two conditions
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∂r
(
ε̄ijAj + 2πδ(x)δit

√−γ γ−1ȧt
)

= 0, (3.14a)

∂i
(
ε̄ijAj + 2πδ(x)δit

√−γ γ−1ȧt
)

= 0. (3.14b)

The general solution for the Chern-Simons gauge field thus takes the form

ε̄ijAj =
2π

N
πtaδ(x)δit + ε̄ijA(0)j(t, x), (3.15)

where A(0)i(t, x) is a flat connection on the AdS3 boundary, i.e. ε̄ij∂iA(0)j = 0. This

implies that the two components A(0)i(t, x) are not both arbitrary sources, in contrast to

what happens for a Maxwell gauge field. As we shall see below, in order to obtain a well-

defined variational problem for the Chern-Simons gauge field, we must add the appropriate

boundary term [81, 92–95].

In our model, a key observation that will play a role in the choice of boundary condi-

tions for the Chern-Simons gauge field is that the AdS2 fields source only Ax, while At is

independent of the radial coordinate. This implies that we can use a residual U(1) gauge

transformation, i.e. preserving the radial gauge Ar = 0, to set At to zero, so that the

Chern-Simons gauge field decouples from the equations of motion for the AdS2 fields. In

that choice of gauge, the Chern-Simons gauge field takes the simple form

Ax = −2πδ(x)
√−γ γ−1ȧt +A(0)x, At = A(0)t = 0, (3.16)

where A(0)x is a function of x only, but is otherwise arbitrary. However, when we discuss

the variational problem for the Chern-Simons gauge field, we will reinstate A(0)t.

We now solve for the AdS2 fields. We want to find a real and static background solution,

and then consider time-dependent fluctuations about that solution. The most generic real

and static background solution includes a0
t (r) and φ0(r), whose equations of motion are

ä0
t −

1

2
γ−1γ̇ȧ0

t − 2a0
tφ

2
0 = 0, (3.17a)

φ̈0 +
1

2
γ−1γ̇φ̇0 − (γ−1(a0

t )
2 +M2)φ0 = 0. (3.17b)

We have been able to solve these equations analytically (i.e. without numerics) only for

φ0(r) = 0. Solutions with φ0(r) 6= 0 were obtained numerically in refs. [31, 32].

We now introduce fluctuations δat, δΦ, and δΦ† about the static background solution,

linearize their equations of motion, and Fourier transform from time t to frequency ω via

∂t → −iω, to obtain

ωγ−1δȧt = φ0(δΦ̇− δΦ̇†)− φ̇0(δΦ− δΦ†) (3.18a)

δΦ̈ +
1

2
γ−1γ̇δΦ̇− γ−1(ω + a0

t )
2δΦ−M2δΦ = γ−1φ0(ω + 2a0

t )δat, (3.18b)

δΦ̈†+
1

2
γ−1γ̇δΦ̇†−γ−1(−ω+a0

t )
2δΦ†−M2δΦ† = γ−1φ†0(−ω + 2a0

t )δat. (3.18c)

We will consider these equations in the unscreened and screened phases separately.
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3.2.1 Response functions in the unscreened phase

In the unscreened phase, where φ0 = 0, eq. (3.18a) becomes trivial, and eqs. (3.18b)

and (3.18c) decouple. These second-order equations for the fluctuations δΦ and δΦ† can

be turned into first-order equations for the two-point functions as follows. The canonical

momenta in eqs. (3.4) and (3.8) imply that on-shell the radial velocities become functions

of the induced fields. To linear order in the fluctuations we thus have

δΦ̇ = RΦ†ΦδΦ, δΦ̇† = RΦΦ†δΦ
†, (3.19)

where the response functions RΦ†Φ and RΦΦ† depend only on the background a0
t and φ0,

as well as ω. Hermitian conjugation implies that R†
ΦΦ†

(ω) = RΦ†Φ(−ω). Inserting these

expressions into the two decoupled fluctuation equations, eqs. (3.18b) and (3.18c), leads to

the two Riccati equations [88, 89]

ṘΦ†Φ +
1

2
γ−1 γ̇RΦ†Φ +R2

Φ†Φ − γ−1
(
ω + a0

t

)2 −M2 = 0, (3.20a)

ṘΦΦ† +
1

2
γ−1 γ̇RΦΦ† +R2

ΦΦ† − γ−1
(
ω − a0

t

)2 −M2 = 0. (3.20b)

Using eq. (3.2) to change the radial coordinate from r back to z, and using the solution for

the background gauge field a0
t = Q(1/z − 1/zH) these Riccati equations become

−zh1/2R′Φ†Φ +
1

2
h−1/2(2h− zh′)RΦ†Φ +R2

Φ†Φ + z2h−1 (ω +Q(1/z − 1/zH))2 −M2 = 0,

(3.21a)

−zh1/2R′ΦΦ† +
1

2
h−1/2(2h− zh′)RΦΦ† +R2

ΦΦ† + z2h−1 (ω −Q(1/z − 1/zH))2 −M2 = 0,

(3.21b)

where primes denote ∂z, for example R′
Φ†Φ
≡ ∂zRΦ†Φ.

We want to solve eqs. (3.21) with in-going boundary conditions at the horizon.

Eqs. (3.21) can be solved analytically, either directly, or by first transforming them into

second-order linear homogeneous equations through the change of variables

RΦ†Φ = −z h1/2 y′+/y+, RΦΦ† = −z h1/2 y′−/y−, (3.22)

where the functions y± satisfy the second order equations2

y′′± +
2z

z2 − z2
H

y′± +

(
(ω ±Q(1/z − 1/zH))2

(1− z2/z2
H)2

− ν2 +Q2 − 1/4

z2(1− z2/z2
H)

)
y± = 0, (3.23)

where ν ≡
√
M2 −Q2 + 1/4. The two linearly independent solutions of eq. (3.23) are

y±(z, ω; ν) and y±(z, ω;−ν) where

y±(z, ω; ν)=
(z/zH)

1
2

+ν(1−z/zH)
iωzH

2

(1 + z/zH)
1
2

+ν+
iωzH

2

2F1

(
1

2
+ν∓iQ+iωzH ,

1

2
+ν±iQ, 1+2ν;

2z

z+zH

)
.

(3.24)

2Eq. (3.23) is identical to the equation of motion in ref. [77] (after their eq. (5.20)), with the identifications

ζ0 = zH , qed = ±Q, mR2 = M .
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The linear combination of y±(z, ω; ν) and y±(z, ω;−ν) that satisfies in-going boundary

condition at the horizon is

yin± (z, ω; ν) =
1

ν

(
y±(z, ω; ν) + c±(ω; ν)y±(z, ω;−ν)

)
, (3.25a)

c±(ω; ν) ≡ − Γ(1 + 2ν)Γ(1
2 − ν ± iQ− iωzH)Γ(1

2 − ν ∓ iQ)

22νΓ(1− 2ν)Γ(1
2 + ν ± iQ− iωzH)Γ(1

2 + ν ∓ iQ)
. (3.25b)

The general in-going solutions of eqs. (3.21) are therefore

RΦ†Φ = −z h1/2 y
′in
+ (z, ω; ν)

yin+ (z, ω; ν)
, RΦΦ† = −z h1/2 y

′in
− (z, ω; ν)

yin− (z, ω; ν)
. (3.26)

As explained in detail in refs. [31–34], to guarantee that O is dimension 1/2, and hence

our Kondo coupling O†O is classically marginal, we must choose M2 = −1/4 +Q2, so that

ν = 0. In the limit ν → 0, the solution in eq. (3.25) has the asymptotic behavior

yin± (z, ω; 0) = 2z1/2 (log(z/zH) + Θ±(ω)) + . . . , (3.27)

where . . . represents terms that vanish faster than those shown as z → 0, and

Θ±(ω) ≡ H
(
−1

2
± iQ− iωzH

)
+H

(
−1

2
∓ iQ

)
+ log 2, (3.28)

and H(n) denotes the nth harmonic number. The response functions’ asymptotic expan-

sions are then

RΦ†Φ = −1

2
− 1

log(z/zH) + Θ+(ω)
+O(z), RΦΦ† = −1

2
− 1

log(z/zH) + Θ−(ω)
+O(z).

(3.29)

One of our main tasks in the remainder of this section is to determine how the coefficients

in the asymptotic expansion in eq. (3.29) can be translated into the two-point functions of

O and O†.

3.2.2 Response functions in the screened phase

In the screened phase, where φ0 6= 0, eqs. (3.18) are three coupled equations for the three

fluctuations. They can be turned into a system of coupled Riccati equations by introducing

response functions as

δΦ̇ = RΦ†ΦδΦ +RΦ†Φ†δΦ
† + γ−1RΦ†aδat, (3.30a)

δΦ̇† = RΦΦδΦ +RΦΦ†δΦ
† + γ−1RΦaδat. (3.30b)

We could similarly introduce response functions for δȧt, however eq. (3.18a) implies that

they are completely determined by the response functions in eq. (3.30). Inserting eq. (3.30)

into the fluctuation equations eqs. (3.18b) and (3.18c) leads to a system of six coupled

Riccati equations.

Although the six response functions defined in eq. (3.30) will be useful for extracting

the two-point functions in the following, we will now show that in fact they can be mapped
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to only four independent response functions. The in-going boundary condition then forces

one of these four to vanish identically, leaving only three non-trivial, independent response

functions.

We first re-express eq. (3.18) in terms of the fluctuations of the modulus and phase,

δφ and δψ, respectively, which leads to two coupled second-order equations for the gauge

invariant fluctuations, (δat + iωδψ) and δφ:

∂r

(
δȧt + iωδψ̇

1 + 1
2γ
−1φ−2

0 ω2

)
−

1
2γ
−1γ̇

(
δȧt + iωδψ̇

)

1 + 1
2γ
−1φ−2

0 ω2
− 2φ2

0 (δat + iωδψ) = 4φ0a
0
t δφ, (3.31a)

δφ̈+
1

2
γ−1γ̇δφ̇− γ−1ω2δφ−

(
M2 + γ−1

(
a0
t

)2)
δφ = 2φ0γ

−1a0
t (δat + iωδψ) . (3.31b)

Given a solution for (δȧt + iωδψ̇), we can extract δat, and hence also δψ, by re-writing

eq. (3.18a) as

δȧt =
1

1 + 1
2γ
−1φ−2

0 ω2

(
δȧt + iωδψ̇

)
. (3.32)

We can turn eq. (3.31) into a system of Riccati equations by introducing four response

functions,

δȧt = R11 (δat + iωδψ) + γR12δφ, δφ̇ =
1

2
(R+ γR12)γ−1 (δat + iωδψ) +

1

2
R22δφ,

(3.33)

where, with the benefit of hindsight, we have parameterized δφ̇ so that R will satisfy a

homogeneous equation. Using the identities δΦ = δφ + iφ0δψ and δΦ† = δφ − iφ0δψ,

we can express the six response functions introduced in eq. (3.30) in terms of only four

independent response functions, namely those in eq. (3.33), as advertised:

RΦa =
1

2

(
R+ γR12 − ωφ−1

0 R11

)
, RΦ†a =

1

2

(
R+ γR12 + ωφ−1

0 R11

)
(3.34a)

RΦΦ =
1

4

(
R22 − ω2γ−1φ−2

0 R11 − 2φ−1
0 φ̇0 + ωγ−1φ−1

0 R
)
, (3.34b)

RΦ†Φ† =
1

4

(
R22 − ω2γ−1φ−2

0 R11 − 2φ−1
0 φ̇0 − ωγ−1φ−1

0 R
)
, (3.34c)

RΦ†Φ =
1

4

(
R22 + 2ωφ−1

0 R12 + ω2γ−1φ−2
0 R11 + 2φ−1

0 φ̇0 + ωγ−1φ−1
0 R

)
, (3.34d)

RΦΦ† =
1

4

(
R22 − 2ωφ−1

0 R12 + ω2γ−1φ−2
0 R11 + 2φ−1

0 φ̇0 − ωγ−1φ−1
0 R

)
. (3.34e)

Inserting eq. (3.33) into eqs. (3.31) then leads to Riccati equations

Ṙ11 −
1

2
γ−1γ̇R11 +

(
1 +

ω2

2γφ2
0

)
R2

11 +
1

2
R12(R+ γR12)− 2φ2

0 = 0, (3.35a)

Ṙ12 +
1

2
γ−1γ̇R12 +

(
1 +

ω2

2γφ2
0

)
R11R12 +

1

2
R12R22 − 4φ0γ

−1a0
t = 0, (3.35b)

Ṙ22 +
1

2
γ−1γ̇R22 +

(
1 +

ω2

2γφ2
0

)
R12(R+ γR12)

+
1

2
R2

22 − 2
(
M2 + γ−1(a0

t )
2 + γ−1ω2

)
= 0, (3.35c)

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
9

Ṙ −
(

1

2
γ−1γ̇ −

(
1 +

ω2

2γφ2
0

)
R11 −

1

2
R22

)
R = 0. (3.35d)

We can solve eq. (3.35d) by direct integration,

R = C(ω)
√−γ exp

(
−
∫

dr′
[(

1 +
ω2

2γφ2
0

)
R11 +

1

2
R22

])
, (3.36)

where C(ω) is an integration constant. In appendix A we show that the in-going boundary

conditions for the fluctuations on the horizon require C(ω) = 0, and hence R = 0. We

have thus shown that only three non-trivial, independent response functions remain, as

advertised. Setting R = 0, and using eq. (3.2) to change the radial coordinate from r to z,

eqs. (3.35) become

−zh1/2R′11 −
(2h− zh′)

2h1/2
R11 +

(
1− z2ω2

2hφ2
0

)
R2

11 −
1

2
hz−2R2

12 − 2φ2
0 = 0, (3.37a)

−zh1/2R′12 +
(2h− zh′)

2h1/2
R12 +

(
1− z2ω2

2hφ2
0

)
R11R12

+
1

2
R12R22 + 4φ0z

2h−1a0
t = 0, (3.37b)

−zh1/2R′22 +
(2h− zh′)

2h1/2
R22 −

(
1− z2ω2

2hφ2
0

)
h

z2
R2

12

+
1

2
R2

22 +
2z2

h

(
(a0
t )

2 + ω2
)
− 2M2 = 0. (3.37c)

Using eqs. (3.37), we derive the near-horizon asymptotic expansions of R11, R12, and R22

in appendix A, and the near-boundary asymptotic expansions in appendix B. Eqs. (3.37)

are first-order, hence the solution for each response function has one integration constant,

which we fix using the in-going boundary condition at the horizon (more specifically, by

demanding that the near-horizon expansion coincides with that in eq. (A.11)).

In the screened phase we have been able to obtain the background solutions a0
t and φ0

only numerically. We have thus solved eqs. (3.37) only numerically, by integrating them

from the horizon to the boundary, subject to the near-horizon behavior in eqs. (A.11). We

then extract the two-point functions from the near-boundary asymptotic expansions of the

solutions, as we discuss in the next subsection.

3.3 Holographic renormalization

To extract the physical one- and two-point functions from the solutions for the background

and the response functions, we must perform holographic renormalization (holo-ren) [43–

52]. For a recent review of holo-ren, see ref. [53]. Holo-ren consists of deriving the ap-

propriate boundary counterterms that render the variational problem well posed for the

desired boundary conditions, as well as determining the resulting holographic dictionary,

relating physical observables to the solutions in the bulk.

As we mentioned in section 1 and at the beginning of this section, the holo-ren of

our holographic Kondo model involves a number of subtleties, stemming from the unusual
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form of the Fefferman-Graham (FG) expansion of gauge fields in AdS2 and the related

second class constraint eq. (B.2), as well as the mixed boundary conditions we impose on

the complex scalar Φ to introduce the Kondo coupling. In the remainder of this section we

will address these issues systematically.

We saw above that the functional S defined through eq. (3.8) coincides with the reg-

ularized on-shell action, which we will denote as Sreg, and satisfies the Hamilton-Jacobi

equation, eq (3.10). In particular, the divergent parts of S and Sreg coincide, allowing

us to determine the counterterms by solving the Hamilton-Jacobi equation. Since we are

only interested in the divergent part of S, we can simplify the Hamilton-Jacobi equation

eq. (3.10) by dropping terms that affect only the finite parts of S. Using the leading form

of the asymptotic expansions (B.4) in appendix B, and the general solution for the Chern-

Simons field in eq. (3.15), a simple power counting argument shows that we can ignore any

terms that involve At, ψ, or the time derivatives of any fields, and moreover, we can take

γ → −e2r. To determine the counterterms, we can thus use the “reduced” Hamiltonian

Hreduced

(
πta, πφ, at, φ; γ

)
=− 1

N

∫
dt

1√−γ

(
1

2
γ(πta)

2 +
1

4
π2
φ

)
+N

∫
dt
√−γ

(
γ−1a2

t +M2
)
φ2,

(3.38)

and solve the simplified Hamilton-Jacobi equation

Hreduced

(
πta =

δS
δat

, πφ =
δS
δφ
, at, φ; γ

)
+ 2γ

δS
δγ

= 0, (3.39)

in order to determine the divergent part of Sreg in the form S[at, φ; γ].

At this point we encounter the first subtlety in the holo-ren of our model, namely,

the leading term of the AdS2 gauge field’s FG expansion in eq. (B.4) is the charge term,

Qer, and not the chemical potential term, µ(t). This is a generic feature of gauge fields in

AdS2 and AdS3, as well as rank-p antisymmetric tensor fields in AdSd+1 with p ≥ d/2 [91].

Following ref. [90], we will argue that in this case, consistency with the symplectic structure

of the theory, as well as locality, requires the counterterms to be a local function of the

canonical momentum πta, and not of the gauge potential at. As a result, in practice we

should determine not S, but its Legendre transform,

S̃[πta, φ; γ] = S −
∫

dt πtaat, (3.40)

by solving the Legendre transform’s Hamilton-Jacobi equation,

Hreduced

(
πta, πφ =

δS̃
δφ
, at = − δS̃

δπta
, φ; γ

)
+ 2γ

δS̃
δγ

= 0. (3.41)

Our ansatz to solve eq. (3.41) is

S̃G = N

∫
dt
√−γ G(u, v), (3.42)

so that we now need to solve for G(u, v), where

u ≡ 1

2

(
πta/N

)2
, v ≡ φ2. (3.43)
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By construction, S̃G agrees with the Legendre transform of Sreg, up to finite terms. Insert-

ing our ansatz eq. (3.42) into eq. (3.41) gives us an equation for G(u, v),

G + u− v
(
G2
v + 2uG2

u −M2
)

= 0, (3.44)

where Gu ≡ ∂uG and Gv ≡ ∂vG. Solving eq. (3.44) asymptotically near the boundary,

subject to the boundary conditions dictated by the FG expansions in appendix B, and

specifically eq. (B.4), unambiguously determines the divergent part of the on-shell action,

and hence the counterterms required to renormalize the theory.

Moreover, knowing G(u, v) allows us to renormalize not only the on-shell action, but

also the canonical variables, and hence the response functions through the identities

aGt = −δS̃G
δπta

= − 1

N

√−γ Gu πta, πGΦ =
δS̃G
δΦ

= N
√−γ Φ† Gv, πG

Φ†
=
δS̃G
δΦ†

= N
√−γ Φ Gv.

(3.45)

Linearizing these, and comparing to the definitions of the response functions in eq. (3.30),

gives

RG11 = − 1

Gu + 2uGuu
, RG

ΦΦ†
= RG

Φ†Φ
=

2uvG2
uv

Gu + 2uGuu
− (Gv + vGvv) ,

RGΦa =
Guv

Gu + 2uGuu

(
γπtaΦ

†

N
√−γ

)
, RGΦΦ =

(
2uG2

uv

Gu + 2uGuu
− Gvv

)
(Φ†)2,

RG
Φ†a

=
Guv

Gu + 2uGuu

(
γπtaΦ

N
√−γ

)
, RG

Φ†Φ†
=

(
2uG2

uv

Gu + 2uGuu
− Gvv

)
Φ2, (3.46)

where the superscript G on RG11 and the other response functions is merely a reminder that,

by construction, they coincide with the exact response functions only asymptotically near

the boundary.

A second subtlety in the holo-ren concerns the form of the solution G(u, v) of eq. (3.44)

and is related once more to the asymptotic form of the AdS2 gauge field. The near-

boundary asymptotic expansions in appendix B imply that as r →∞, πta ∼ NQ and hence

u ∼ Q2/2. Although the equations of motion allow Q(t) to be an arbitrary function of

time, a well-defined space of asymptotic solutions exits only when the constraint eq. (B.2)

holds, which implies that Q2/2 = M2/2 + 1/8 ≡ uo on the constraint surface. As a result,

only Neumann boundary conditions are admissible for the AdS2 gauge field at, i.e. keeping

the charge Q fixed.3 The solution of eq. (3.44) satisfying the boundary conditions dictated

by the near-boundary asymptotics in eq. (B.4) thus admits an expansion of the form

G(u, v) =

∞∑

n=0

gn(v)(u− uo)n. (3.47)

3The two-impurity holographic Kondo model of ref. [32] involved a U(2) gauge field and a charged scalar

in AdS2. Mixed boundary conditions were imposed on the U(2) gauge field, which required the scalar mass

M to change dynamically in order to preserve the scalar field’s asymptotic form, and hence obtain a well

defined variational problem. In the present work we treat M as a fixed parameter of the theory and so

mixed boundary conditions on the AdS2 gauge field are not allowed. We stress that these types of problems

do not arise in the absence of charged matter. For example in the model of ref. [90], with a U(1) gauge

field and dilatonic scalar in AdS2, but no charged matter, Q was a strictly conserved quantity, and both

Neumann and Dirichlet boundary conditions were permitted for the gauge field.
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Crucially, the series in eq. (3.47) need not be convergent, and should be understood as an

asymptotic expansion only, truncated to a finite, but arbitrary, order.

Eq. (B.4) also implies that asymptotically near the boundary, u − uo ∼ Q2/2 − uo +

O(e−rr2α2) ∼ QδQ + O(e−rr2α2), so u − u0 can receive two different potential contribu-

tions: δQ, which dominates if non-zero, and the mode α. When δQ 6= 0, the order m term

in the expansion in eq. (3.47) encodes the near-boundary divergences of the m-point func-

tion of the operator sourced by δQ. These divergences enter two-point functions via the

near-boundary asymptotic expansions of the response functions in eq. (B.10). If δQ = 0,

however, then u− uo does not contribute to any such divergences, but also, no correlators

of the operator sourced by δQ can be computed. In the latter case, therefore, the countert-

erms come entirely from g0(v). In that case, the near-boundary expansions of the response

functions appears in eq. (B.12), which encode the two-point functions of only O and O†.
Inserting the expansion in eq. (3.47) into the equation for G, eq. (3.44), leads to a

tower of differential equations for the coefficients gn(v), the first three of which are

g0 + uo − v(g′20 + 2uog
2
1 −M2) = 0, (3.48a)

g1 + 1− v(2g′0g
′
1 + 2g2

1 + 8uog1g2) = 0, (3.48b)

g2 − v(g′21 + 2g′0g
′
2 + 8uog

2
2 + 12uog1g3 + 8g1g2) = 0, (3.48c)

where primes denote ∂v. We will only need to solve these equations asymptotically near

the boundary, and only keeping terms up to a certain order, since higher orders will not

contribute to the divergences of an m-point function with fixed m. In particular, the near-

boundary asymptotic expansions in eq. (B.4) allow us to parameterize g0(v) and g1(v) as

g0 = −uo + h0, g1 = −1 + h1, (3.49)

where h0 and h1 behave as v times non-negative integer powers of log v as v → 0, as do

g2 and g3. We present the explicit small-v expansions of h0, h1 and g2 in appendix C.

The near-boundary, or equivalently small-v, asymptotic solutions for g0(v), g1(v) and

g2(v) in appendix C present yet another subtlety of the holo-ren of our model: our choice of

the scalar field’s mass, to guarantee that our Kondo coupling O†O is classically marginal,

leads to powers of log v in the small-v expansions of g0(v), g1(v), and g2(v). However,

such non-analytic in v terms in the counterterms amount to subtracting a non-analytic

function of the source of the dual scalar operator, and hence violate the locality of the

counterterms. To restore locality, we are forced to sacrifice the radial covariance of the

counterterms [47, 88], i.e. the counterterms will exhibit explicit dependence on the r cutoff,

which is the holographic manifestation of a conformal anomaly. This is manifest, for

example, in the expressions for the counterterms in eq. (C.9) in appendix C.

Given a near-boundary asymptotic solution Gct(u, v) of eq. (3.44), the counterterms

are defined as

S̃ct = −N
∫

dt
√−γ Gct(u, v), (3.50)

and hence the renormalized action evaluated at the radial cutoff is

S̃ren = S̃reg + S̃ct. (3.51)
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By construction, S̃ct has the same divergences as S̃reg, hence S̃ren remains finite as we

remove the cutoff. Varying S̃ren gives then the renormalized canonical variables:

δS̃ren =

∫
dt
(
− aren

t δπta + πren
Φ δΦ + πren

Φ† δΦ
†
)

+

∫
d2x πi ren

A δAi

=

∫
dt
(
−aren

t δπta + πren
φ δφ+ πren

ψ δψ
)

+

∫
d2x πi ren

A δAi, (3.52)

aren
t = −δS̃ren

δπta
= at +

1

N

√−γ Gct
u πta, πi ren

A =
δS̃ren

δAi
= πiA = −N

4π
ε̄ijAj ,

πren
Φ =

δS̃ren

δΦ
= πΦ −N

√−γ Gct
v Φ†, πren

φ =
δS̃ren

δφ
= πφ −N

√−γ Gct
v 2φ,

πren
Φ† =

δS̃ren

δΦ†
= πΦ† −N

√−γ Gct
v Φ, πren

ψ =
δS̃ren

δψ
= πψ, (3.53)

which are evaluated at the radial cutoff. As mentioned above, for the scalar field the

canonical momentum is renormalized, while for the AdS2 gauge field, at itself is renormal-

ized instead, due to the asymptotic behavior of gauge fields in AdS2 and the fact that the

counterterms are local functions of the canonical momentum πta [90].

We now want to plug the FG expansions of the fields into the renormalized canoni-

cal variables in eq. (3.53). Crucially, however, we show in appendix B that background

solutions and fluctuations have different FG expansions, so we must treat them separately.

The FG expansions for background solutions appear in eq. (B.4), reproduced here for

convenience:

at = erQ− 2Q

(
1

3
α2r3 + (α2 − αβ)r2 + (2α2 − 2αβ + β2)r

)
+ µ+ · · · , (3.54a)

φ = e−r/2 (−αr + β) + · · · , (3.54b)

ψ = ψ− + ψ+r
−1 + · · · , (3.54c)

where µ, α, β and ψ− are arbitrary functions of time, while U(1) gauge invariance implies

both that Q is independent of time and ψ+ = 0. The . . . represent terms that vanish as

r →∞ faster than those shown, and which are completely determined by those shown, via

the equations of motion. Inserting eq. (3.54) into eq. (3.53) and using the counterterms in

eq. (C.9) allows us to remove the radial cutoff, and hence obtain the renormalized canonical

variables in terms of the FG coefficients:

âren
t ≡ lim

r→∞
aren
t = µ+A(0)t π̂ta ≡ lim

r→∞
πta = NQ,

− 2Q

3α

(
β3 − 3αβ2 + 6α2β − 6α3

)
,

π̂ren
Φ ≡ lim

r→∞
(re−r/2πren

Φ ) = Nβe−iψ− , Φ̂ ≡ lim
r→∞

(r−1er/2Φ) = −αeiψ− ,

π̂ren
Φ† ≡ lim

r→∞
(re−r/2πren

Φ† ) = Nβeiψ− , Φ̂† ≡ lim
r→∞

(r−1er/2Φ†) = −αe−iψ− ,

π̂ren
φ ≡ lim

r→∞
(re−r/2πren

φ ) = 2Nβ, φ̂ ≡ lim
r→∞

(r−1er/2φ) = −α. (3.55)
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We took µ→ µ+ A(0)t in the expression for âren
t , because the above asymptotic solutions

for the AdS2 fields were obtained in the gauge of eq. (3.16), where A(0)t = 0. However, in

order to identify the correct one-point functions, the general dependence on all the sources

must be reinstated.4 As we shall see, this contribution of A(0)t is crucial for obtaining the

two-point functions.

For the fluctuations, we determine the response functions by linearizing eq. (3.53) in

the fields induced at the radial cutoff. The complete analysis leading to the full set of

renormalized response functions is carried out in appendix C. As an illustration, we quote

here the results for the renormalized scalar response functions only, which take the form

Rren
ΦΦ = RΦΦ + Gct

vv(Φ
†)2, Rren

Φ†Φ† = RΦ†Φ† + Gct
vvΦ

2,

Rren
ΦΦ† = RΦΦ† +

(
Gct
v + vGct

vv

)
, Rren

Φ†Φ = RΦ†Φ +
(
Gct
v + vGct

vv

)
. (3.56)

The FG expansions of the response functions appear in eq. (B.13), reproduced here for

convenience:

RΦ†Φ = −1

2
+

1

r
+
R̂Φ†Φ

r2
+· · · , RΦΦ† = −1

2
+

1

r
+
R̂ΦΦ†

r2
+· · · , RΦΦ =

R̂ΦΦ

r2
+· · · , (3.57)

where R̂Φ†Φ, R̂ΦΦ† , and R̂ΦΦ are functions of frequency ω. The . . . represent terms that

vanish as r →∞ faster than those shown, and which are completely determined by those

shown, via the equations of motion. Inserting eq. (3.57) into eq. (3.56) and using the

counterterms in eq. (C.9) allows us to remove the radial cutoff, and hence obtain the

renormalized response functions:

R̂ren
ΦΦ† = lim

r→∞

(
r2Rren

ΦΦ†

)
= R̂ΦΦ† , R̂ren

Φ†Φ = lim
r→∞

(
r2Rren

Φ†Φ

)
= R̂Φ†Φ,

R̂ren
ΦΦ = lim

r→∞

(
r2Rren

ΦΦ

)
= R̂ΦΦ, R̂ren

Φ†Φ† = lim
r→∞

(
r2Rren

Φ†Φ†

)
= R̂Φ†Φ† . (3.58)

eq. (3.58) is valid in both the unscreened and screened phases, although the values for

R̂Φ†Φ, R̂Φ†Φ† , R̂ΦΦ and R̂ΦΦ† are different in the two phases.

3.4 Boundary conditions and the renormalized generating function

The renormalized action S̃ren cannot be identified with the generating function in the

dual theory until we impose boundary conditions on the fields and add the corresponding

finite boundary terms that impose these boundary conditions. The boundary conditions

also dictate which combinations of the renormalized canonical variables in eq. (3.55) are

identified with the sources in the dual field theory. In this subsection we will introduce

the finite boundary terms of our model, and then identify the sources in the dual field

theory. We will then determine the Ward identities of the dual field theory, and finally,

determine the renormalized two-point functions of our model, in terms of coefficients in

the FG expansion of the response functions, eq. (B.13) or equivalently eq. (3.57).

In our case, three finite boundary terms are required to have a well-posed varia-

tional problem that captures the desired physics. First, for the Chern-Simons gauge field

4A(0)t can be reinstated by letting at → at + A(0)t, recalling that At = A(0)t is constant and enters a′ts

equation of motion through the U(1) current Jt, eq. (3.13), with gauge-covariant derivative in eq. (2.9).
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alone, with no AdS2 defect fields, a well-posed variational problem requires the boundary

term5 [81, 92–95]

S1 =
N

8π

∫
d2x
√−γ̄ γ̄ijAiAj =

N

8π

∫
d2x A+A−, (3.59)

where A± ≡ Ax±At, and γ̄ij is the induced metric on a radial slice of AdS3. Second, because

the general solution for the Chern-Simons gauge field in eq. (3.15) receives a contribution

from the AdS2 fields, to guarantee a well-posed variational principle for the Chern-Simons

gauge field in the presence of the AdS2 defect we must add the finite boundary term

S2 = −1

4

∫
dt πtaA−, (3.60)

which couples the Chern-Simons and AdS2 fields. Third, in order to introduce our Kondo

coupling, we must add the finite boundary term6 [31, 32]

Sκ =
κ

N

∫
dt π̂ren

Φ π̂ren
Φ† . (3.61)

Putting everything together, the generating functional of the dual theory is7

Wκ ≡ lim
r→∞

(S̃ren + S1 + S2 + Sκ). (3.62)

To identify the sources in the dual field theory, we consider the variational principle

for Wκ,

δWκ =

∫
dt
(
−âtδπ̂ta + π̂ren

Φ δΦ̂κ + π̂ren
Φ† δΦ̂

†
κ

)
+
N

4π

∫
d2x

(
A(0)+ +

π

N
π̂taδ(x)

)
δA(0)−,

(3.63)

where we have defined

ât ≡ âren
t −A(0)t −

1

4
A(0)−, Φ̂κ ≡ Φ̂ +

κ

N
π̂ren

Φ† , Φ̂†κ ≡ Φ̂† +
κ

N
π̂ren

Φ . (3.64)

A well-posed variational problem for Wκ requires that we keep fixed π̂ta, Φ̂κ, Φ̂†κ, and

A(0)−, hence we identify these as the sources of the dual operators. Keeping these fixed

corresponds to a Neumann boundary condition for the AdS2 gauge field, and a mixed (or

Robin) boundary condition for the scalar field, in which α = κβ [31, 96]. Our holographic

Kondo coupling is κ, related to the Kondo coupling λ of the Kondo Hamiltonian in eq. (2.1)

as κ ∝ N λ. For more details about our holographic Kondo coupling and its RG running,

see ref. [31] and especially section 4 of ref. [32].

5Changing the sign of the boundary term in eq. (3.59) simply interchanges the role of A+ and A− in the

following.
6Instead of eq. (3.61), refs. [31, 32] used the boundary term (κ/N)

∫
dt(π̂ren

φ )2 =(κ/4N)
∫

dt(π̂ren
Φ +π̂ren

Φ† )2,

which agrees with eq. (3.61) for background solutions, but not for fluctuations. Unlike the boundary term

used in refs. [31, 32], eq. (3.61) preserves the U(1) gauge invariance associated with the AdS2 gauge field.
7The free energy obtained from Wκ, that is with the Legendre transform in eq. (3.40) and the countert-

erms in eq. (3.50) with eq. (C.9), agrees with the free energy computed in refs. [31, 32].
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The one-point functions of the dual operators are then defined via

〈At〉 ≡ −
δW
δπ̂ta

= ât, 〈J+〉 ≡
δW

δA(0)−
=
N

4π

(
A(0)+ +

π

N
π̂taδ(x)

)
,

〈O〉 ≡ − δW
δΦ̂κ

= −π̂ren
Φ , 〈O†〉 ≡ − δW

δΦ̂†κ
= −π̂ren

Φ† , 〈O〉 ≡ −δW
δφ̂κ

= −π̂ren
φ , (3.65)

and are functions of the sources. The scalar operator O is defined as the conjugate to the

real source φ̂κ = (Φ̂κ + Φ̂†κ)/2. Using eq. (3.55), we can express these in terms of the FG

expansion coefficients in eq. (B.4), or equivalently eq. (3.54),

〈At〉 = µ− 2Q

3α

(
β3 − 3αβ2 + 6α2β − 6α3

)
− 1

4
A(0)−, 〈J+〉 =

N

4π

(
A(0)+ + πQδ(x)

)
,

〈O〉 = −Nβe−iψ− , 〈O†〉 = −Nβeiψ− , 〈O〉 = −2Nβ. (3.66)

In general, the Ward identities for the U(1) currents dual to the Chern-Simons and

AdS2 gauge fields depend on the choice of boundary conditions, since different boundary

conditions may preserve different symmetries. Since the Kondo deformation in eq. (3.61)

preserves the U(1) symmetry on the impurity, the U(1) constraints in eq. (3.7) translate

to the Ward identities

Φ̂κ〈O〉 − Φ̂†κ〈O†〉 = ωπ̂ta, ∂−〈J+〉 =
N

4π
∂+A(0)− +

NQ

4
∂−δ(x), (3.67)

where ∂± ≡ ∂x ± ∂t. The Ward identity for the Chern-Simons current J+ is simply

the condition ∂−A(0)+ = ∂+A(0)−, as in the absence of the AdS2 defect. Eqs. (3.67) are

operator identities, i.e. they hold with arbitrary sources. Differentiating the Ward identities

in eqs. (3.67) with respect to the sources leads to relations among higher-point functions.

We are finally ready to compute the main result of this section, namely the two-point

functions of our model. To write the two-point functions involving J+, we introduce chiral

coordinates x± and their Fourier counterparts, the chiral momenta p±. Varying our result

for 〈J+〉 in eq. (3.65), and using the Ward identity ∂−A(0)+ = ∂+A(0)−, we find

〈J+(p+, p−)J+(−p+,−p−)〉 =
N

4π

p+

p−
, (3.68)

which is completely independent of the AdS2 fields, i.e. eq. (3.68) is identical to the previous

results for chiral currents in (1 + 1)-dimensional CFTs in refs. [81, 92, 93]. All two-point

functions between J+ and the impurity operators are zero, except for one:

〈J+(p+, p−)At(−p+,−p−)〉 = −1

4
. (3.69)

Since the two-point functions in eqs. (3.68) and (3.69) are completely insensitive to the

transition between the unscreened and screened phases, we will ignore them henceforth.

In the unscreened phase, besides eqs. (3.68) and (3.69), the only non-trivial two-point

function is the one betweenO andO†. To derive this two-point function we use the following

identities, derived in appendix C (in the unscreened phase the response functions R̂Φπta
and

R̂Φ†πta
vanish, and so the infinitesimal source δπ̂ta does not contribute to these expressions):

δπ̂Φ† = −N(R̂Φ†ΦδΦ̂ + R̂Φ†Φ†δΦ̂
†), δπ̂Φ = −N(R̂ΦΦδΦ̂ + R̂ΦΦ†δΦ̂

†), (3.70)
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where R̂Φ†Φ, R̂Φ†Φ† , R̂ΦΦ and R̂ΦΦ† are the renormalized scalar response functions, which

appear as coefficients in the FG expansions in eq. (3.57). The quantities in eq. (3.70)

represent the renormalized one-point functions, which in the regime of linear response are

linearly proportional to the sources, where the proportionality factor is the renormalized

two-point function. We thus need to write eq. (3.70) in terms of the scalar sources. Using

the scalar sources defined in eq. (3.64), we find

δΦ̂κ = (1− κR̂Φ†Φ)δΦ̂− κR̂Φ†Φ†δΦ̂
†, δΦ̂†κ = −κR̂ΦΦδΦ̂ + (1− κR̂ΦΦ†)δΦ̂

†. (3.71)

In the unscreened phase, in appendix B we find that R̂Φ†Φ† = 0 and R̂ΦΦ = 0, indicat-

ing that 〈O(ω)†O†(−ω)〉 = 0 and 〈O(ω)O(−ω)〉 = 0 respectively. Using that result, and

by combining the variations in eqs. (3.70) and (3.71) in the unscreened phase, we then find

δπ̂Φ† = −N R̂Φ†Φ

(1− κR̂Φ†Φ)
δΦ̂κ, δπ̂Φ = −N R̂ΦΦ†

(1− κR̂ΦΦ†)
δΦ̂†κ, (3.72)

from which we read off the two-point functions

〈O†(ω)O(−ω)〉κ = N
R̂Φ†Φ

1− κR̂Φ†Φ

, 〈O(ω)O†(−ω)〉κ = N
R̂ΦΦ†

1− κR̂ΦΦ†
. (3.73)

We computed RΦ†Φ and RΦΦ† in the unscreened phase in subsection 3.2.1, with the result

in eq. (3.26) and asymptotic expansions in eq. (3.29). Indeed, comparing the asymptotic

expansions in eq. (3.29) to the general FG expansions in eq. (3.57), we find

R̂Φ†Φ = H

(
−1

2
+ iQ− iωzH

)
+H

(
−1

2
− iQ

)
− log(zHΛ/2),

R̂ΦΦ† = H

(
−1

2
− iQ− iωzH

)
+H

(
−1

2
+ iQ

)
− log(zHΛ/2),

(3.74)

where 1/Λ is the near-boundary cutoff in z. Plugging eq. (3.74) into eq. (3.73) then

gives our main result for the unscreened phase, the renormalized two-point functions

〈O†(ω)O(−ω)〉κ and 〈O(ω)O†(−ω)〉κ as functions of the field theory parameters Q, T ,

and ω. We explore the physics of these two-point functions in detail in section 5.

In the screened phase the variations of the renormalized one-point functions are

δπ̂Φ† = −N(R̂Φ†ΦδΦ̂ + R̂Φ†Φ†δΦ̂
†) + R̂Φ†πta

δπ̂ta, (3.75a)

δπ̂Φ = −N(R̂ΦΦδΦ̂ + R̂ΦΦ†δΦ̂
†) + R̂Φπta

δπ̂ta, (3.75b)

δât = −
(
R̂πtaΦδΦ̂ + R̂π̂taΦ†δΦ̂

† + R̂πtaπtaδπ̂
t
a

)
− 1

4
A(0)−. (3.75c)

All response functions in these expressions are determined in appendix C, and their explicit

forms in terms of the coefficients of the FG expansions are shown in eq. (C.17).

To evaluate the two-point functions involving the scalar operators we again need to

determine the infinitesimal sources δΦκ and δΦ†κ in terms of the sources of the undeformed
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theory. From the definitions in eq. (3.64), and the expressions for the response functions

in terms of the FG coefficients in the screened phase in eq. (C.17), we find

δΦ̂κ =

(
1−κ

2
R̂22

)
δφ̂− κ

2N

(
R̂∞12+

ω

α0

)
δπ̂ta, δΦ̂†κ =

(
1−κ

2
R̂22

)
δφ̂− κ

2N

(
R̂∞12−

ω

α0

)
δπ̂ta,

(3.76)

where R̂∞12 is defined in eq. (C.10), and recall δφ̂ = (δΦ̂ + δΦ̂†)/2. However, linearizing the

first Ward identity in eq. (3.67) around a screened phase background solution gives

δΦ̂− δΦ̂† = − κ
N

ω

α0
δπ̂ta, (3.77)

so eq. (3.76) can be re-written as

δΦ̂κ =

(
1− κ

4
R̂22

)
δΦ̂− κ

4
R̂22 δΦ̂

† − κ

2N
R̂∞12 δπ̂

t
a, (3.78a)

δΦ̂†κ = −κ
4
R̂22 δΦ̂ +

(
1− κ

4
R̂22

)
δΦ̂† − κ

2N
R̂∞12 δπ̂

t
a. (3.78b)

Eqs. (3.78) can be inverted to obtain δΦ̂ and δΦ̂† in terms of δΦ̂κ, δΦ̂†κ and δπ̂ta:

δΦ =
1

1− κ
2 R̂22

((
1− κ

4
R̂22

)
δΦ̂k +

κ

4
R̂22 δΦ̂

†
κ +

κ

2N
R̂∞12 δπ̂

t
a

)
, (3.79a)

δΦ† =
1

1− κ
2 R̂22

(
κ

4
R̂22δΦ̂κ +

(
1− κ

4
R̂22

)
δΦ̂†k +

κ

2N
R̂∞12 δπ̂

t
a

)
. (3.79b)

Inserting eq. (3.79) into eq. (3.75) for the scalar one-point functions and making use of the

linearized Ward identity eq. (3.77), we obtain

δπ̂Φ = δπ̂Φ† =
1

1− κ
2 R̂22

(
−N

4
R̂22(δΦ̂κ + δΦ̂†κ)− 1

2
R̂∞12 δπ̂

t
a

)
, (3.80)

from which we read off the two-point functions,

〈O(ω)O(−ω)〉κ = 〈O(ω)O†(−ω)〉κ = 〈O†(ω)O(−ω)〉κ

= 〈O†(ω)O†(−ω)〉κ =
NR̂22/4

1− κR̂22/2
, (3.81a)

〈O(ω)At(−ω)〉κ = 〈O†(ω)At(−ω)〉κ =
R̂∞12/2

1− κR̂22/2
. (3.81b)

Moreover, inserting eq. (3.79) in the gauge field one-point function in eq. (3.75) and

using the expressions in eqs. (C.17) gives

δât =
1

2

(
R̂∞12 + ω/α0

)
δΦ̂ +

1

2

(
R̂∞12 − ω/α0

)
δΦ̂† − 1

N
R̂∞11δπ̂

t
a −

1

4
A(0)− (3.82)

=
R̂∞12/2

1− κR̂22/2

(
δΦ̂κ + δΦ̂†κ

)
− 1

N

(
R̂∞11 +

κ

2

(
ω

α0

)2

−
κ
2 (R̂∞12)2

1− κR̂22/2

)
δπ̂ta −

1

4
A(0)−,
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which reproduce the two-point functions in eqs, (3.69) and (3.81b), and from which we

read off the two-point function

〈At(ω)At(−ω)〉κ =
1

N

(
R̂∞11 +

κ

2

(
ω

α0

)2

−
κ
2 (R̂∞12)2

1− κR̂22/2

)
. (3.83)

As mentioned at the end of subsection 3.2.2, in the screened phase we have been

able to obtain the background solutions a0
t and φ0 only numerically, and hence have only

solved eq. (3.37) forR22, R12 andR11 numerically. From those numerical solutions we then

extract the FG expansion coefficients R̂22, R̂12 and R̂11 using the near boundary expansions

in eqs. (B.10), and thus obtain the two-point function via eqs. (3.81) and (3.83). We present

our numerical results for the scalar two-point functions in the screened phase in section 6.

4 Review: Fano resonances

A spectral function ρ is defined as the anti-Hermitian part of a retarded Green’s function, G:

ρ ≡ i
[
G−G†

]
= −2 ImG. (4.1)

In our system, we are interested in

GO†O ≡ 〈O†(ω)O(−ω)〉κ, (4.2)

and the associated spectral function ρO†O = −2 ImGO†O. Given the anti-Hermitian part

of a Green’s function, a Kramers-Kroning relation completely determines the Hermitian

part. The latter therefore contains no additional information, so we will compute only

the former, i.e. spectral functions. In general, for real ω, when ω > 0 the spectral

function is proportional to the probability amplitude to excite a particle, whereas when

ω < 0 the spectral function is proportional to (minus) the probability amplitude to excite

an anti-particle (hole). Unitarity implies the positivity property ωρO†O ≥ 0 for real

ω ∈ (−∞,∞), so that ρO†O ≥ 0 when ω > 0 and ρO†O ≤ 0 when ω < 0.

Spectral functions exhibit Fano resonances when a continuum (in energy) of states

scatter off a resonant state, or discrete set of resonant states, with energy somewhere

in the continuum. The resonant states are always localized in energy, and usually (but

not always) localized in real space, i.e. they are often associated with some “impurity”.

Numerous examples of Fano resonances appear throughout physics, but a classic example

is the scattering of light (the continuum) off the excited states of an atom (the resonant

states). As mentioned in section 1, Fano resonances have also been observed in quantum

impurity models in one spatial dimension, including side-coupled QDs [76, 78]. For a brief

review of Fano resonances, see for example ref. [76].

The Fano spectral function is

ρFano =

(
ω − ω0 + q Γ

2

)2

(ω − ω0)2 +
(

Γ
2

)2 , (4.3)
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where ω0 fixes the position of the Fano resonance, Γ fixes the width, q is called the “Fano” or

“asymmetry” parameter, and we have fixed the normalization so that limω→±∞ ρFano = 1.

The ρFano in eq. (4.3) can be re-written in an illuminating way:

ρFano = 1 +

(
q2 − 1

) (
Γ
2

)2

(ω − ω0)2 +
(

Γ
2

)2 +
2q
(

Γ
2

)
(ω − ω0)

(ω − ω0)2 +
(

Γ
2

)2 , (4.4)

where on the right-hand-side, the first term in the sum (the 1) represents the continuum,

the second term is a Lorentzian representing the resonant state, and the third term is the

“mixing” or “interference” term arising from the interaction between the two. Indeed, the

essential physics of Fano resonances is that the incoming scattering states, from the con-

tinuum, have two paths through the system: they can either scatter off the resonant state

(“resonant scattering”) or they can bypass the resonant state (“non-resonant scattering”).

The interference between the two paths generically produces an asymmetric resonance, the

Fano resonance. The Fano parameter q characterizes the amount of mixing or interfer-

ence. More precisely, q2 is proportional to a ratio of probabilities: q2 ∝ the probability of

resonant scattering over the probability of non-resonant scattering.

Figure 2 shows ρFano for some representative values of q. Figure 2 (a) shows ρFano for

generic q > 0, with a characteristic asymmetric Fano resonance. In these cases, ρFano has

a minimum and maximum:

minimum : ρFano = 0 at ω = ω0 − q
Γ

2

maximum : ρFano = 1 + q2 at ω = ω0 +
1

q

Γ

2
.

At ω = ω0, which is between the minimum and maximum, ρFano = q2. Taking q < 0 simply

reflects the Fano resonance described above about the ω = 0 axis, so we will restrict to

q > 0 henceforth.

For the special values q = 0, 1, and ∞, the Fano resonance becomes symmetric.

Figure 2 (b) shows ρFano for q = 0, meaning purely non-resonant scattering. In this case,

the maximum moves to ω = +∞ while the minimum moves to ω = ω0, leaving only a

symmetric dip called an anti-resonance. Figure 2 (c) shows ρFano for q = 1, meaning

equal probabilities of resonant and non-resonant scattering. In this case, the minimum and

maximum are symmetric about ω = ω0. Figure 2 (d) shows ρFano/q
2 for q →∞, meaning

purely resonant scattering. In this case, the minimum moves to ω = −∞ and the maximum

moves to ω = ω0, leaving the Lorentzian peak of the resonant state itself.

Near a simple pole at ω∗ = ωR + iωI in the complex ω plane, the retarded Green’s

function is G = Z
ω−ω∗ , with residue Z. As is well-known, a real-valued Z leads to a

Lorentzian resonance in ρ (where the latter is restricted to real ω). However, a complex-

valued residue, Z = ZR + iZI with ZI 6= 0, leads to a Fano resonance:

ρ = −2 ImG =
−2ZR ωI

(ω − ωR)2 + (ωI)
2 +

−2ZI (ω − ωR)

(ω − ωR)2 + (ωI)
2 = −1 + ρFano, (4.5)
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1

(a) (b)

(c) (d)

1

1

1

Figure 2. The Fano spectral function, ρFano in eq. (4.3), as a function of (ω − ω0) / (Γ/2) (so the

origin is at ω = ω0, where ρFano = q2), for (a) a generic value of q, where the Fano resonance is

asymmetric, (b) q = 0, where the Fano resonance becomes a symmetric dip or anti-resonance, and

(c) q = 1, where the minimum and maximum becomes symmetric. (d) Shows ρFano/q
2 as a function

of (ω − ω0) / (Γ/2) in the limit q →∞, where the Fano resonance becomes a Lorentzian.

where in the final equality we added and subtracted 1, and used the form of ρFano in

eq. (4.4), with the identifications ω0 = ωR and Γ/2 = |ωI | and

q2 − 1 = −2ZR
ωI

, 2q = −2ZI
|ωI |

. (4.6)

The ratio of these two equations leads to q2 − sign (ωI) 2ZRZI q − 1 = 0. Unitarity requires

sign (ωI) = −1, in which case the solutions for q are

q = −ZR
ZI
±
√

1 +
Z2
R

Z2
I

, (4.7)

or equivalently, using Z = |Z|eiθ,

q = − cot θ ± csc θ. (4.8)

We can obtain the solution with the minus (lower) sign from the solution with the plus

(upper) sign by shifting θ → θ + π, so we will restrict to the upper (plus) sign and to the

interval θ ∈ [0, π], where q > 0. Figure 3 shows q as a function of θ, and table 1 shows how

various limits of θ lead to the symmetric Fano resonances in figure 2.

In sections 5 and 6 we will see that generically the spectral functions of O and O†
exhibit Fano resonances, in both the unscreened and screened phases, with various q. In

our case, the continuum arises from the (0+1)-dimensional scale invariance associated with

the AdS2 subspace, inherited from the (1 + 1)-dimensional scale invariance associated with
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q

✓0
π
2 π

1

2

3

4

5

6

7

8

9

10

Figure 3. The Fano/asymmetry parameter q as a function of θ (solid black line), from eq. (4.8),

for a simple pole in a retarded Green’s function with complex residue Z = |Z|eiθ. The value q = 1

(dashed black line) produces a symmetric Fano resonance, as in figure 2 (c).

θ ZR ZI q Figure 2

0 |Z| 0 0 (b)

π/2 0 |Z| 1 (c)

π −|Z| 0 ∞ (d)

Table 1. Values of the Fano parameter q producing the symmetric Fano resonances in figure 2,

the corresponding values of ZR and ZI , the real and imaginary parts of the residue Z, and the

corresponding values of θ in Z = |Z|eiθ.

AdS3, and which forces any spectral function to be a power law in ω, i.e. a continuum.

Resonances can then only occur if scale invariance is broken, which we achieve via our

marginally relevant Kondo coupling. In our model, the asymmetry is related to particle-

hole symmetry breaking, that is, q will depend on Q.

5 Unscreened phase

In this section we use the results of sections 2 and 3 to determine the excitation spectrum

of our system in the unscreened phase, by locating the poles of GO†O and GOO† in the

plane of complex frequency ω (subsection 5.1), and the corresponding peaks in ρO†O and

ρOO† for real ω (subsection 5.2).

Some results for the poles appear already in refs. [31], in the unscreened phase and

at small ω. Indeed, a key result of ref. [31] was that in the unscreened phase, and for

any Q (including Q = 0), as T → T+
c a pole moves towards the origin of the complex

ω plane, reaching the origin at precisely T = Tc. If we then take T < Tc but remain in

the unscreened phase, then the pole moves into the upper half of the complex ω plane,

Imω > 0, signaling the instability towards the screened phase.
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Further results appeared in ref. [42], including in particular our central result, the

analytic (i.e. non-numerical) result for GO†O. In ref. [42], we discussed the movement of

poles in GO†O as T → T+
c , presented an analytic formula for Tc in terms of TK and Q,

showed that ρO†O generically has Fano resonances, derived an analytic form for the pole

producing the Fano resonance for T just above Tc, and showed that q → ∞ as Q → ∞,

producing symmetric Fano resonances (Lorentzians).

In this section we will not only reproduce these results, but also extend them, in

particular by exploring in far greater detail the T and Q dependence of the poles in GO†O
and peaks in ρO†O. Moreover, we will present analytic results for poles in the T � Tc limit,

which demonstrate conclusively the appearance of Fano resonances in ρO†O when T � Tc.

As derived in section 3, we have 〈O(ω)†O†(−ω)〉 = 0 and 〈O(ω)O(−ω)〉 = 0, and from

eq. (3.73)

GO†O = N
R̂Φ†Φ

1− κ R̂Φ†Φ

, (5.1)

where from eq. (3.74) we have

R̂Φ†Φ = H

(
−1

2
+ iQ− iωzH

)
+H

(
−1

2
− iQ

)
− ln(zHΛ/2), (5.2)

where H(n) denotes the nth harmonic number.

We can write eqs. (5.1) and (5.2) in terms of field theory quantities using zH = 1/(2πT )

and by replacing Λ with the Kondo temperature TK , following refs. [31, 32], as follows. In

the metric of eq. (2.6), we re-scale to produce dimensionless coordinates,

(z/zH , t/zH , x/zH)→ (z, t, x), (5.3)

which leaves the metric in eq. (2.6) invariant, except for h(z) = 1− z2/z2
H → 1− z2, so the

boundary remains at z = 0 but the horizon is now at z = 1. We also re-scale at(z)zH →
at(z), which is then dimensionless. After the re-scaling, Φ(z)’s asymptotic expansion is

Φ(z) = αT z
1/2 ln z + βT z

1/2 + . . . , (5.4)

where . . . represents terms that vanish faster than those shown when z → 0, and are com-

pletely determined by the terms shown, via the equations of motion. The boundary condi-

tion α = κβ discussed below eq. (3.64) is now αT = κTβT , with κTβT = z
1/2
H κβ, and where

κT ≡
κ

1 + κ ln (zHΛ)
, (5.5)

is our running holographic Kondo coupling, with UV cutoff Λ. If κ < 0, then if T

increases, meaning zH = 1/(2πT ) → 0, then κT exhibits asymptotic freedom, κT → 0−.

We thus identify κ < 0 as an anti-ferromagnetic holographic Kondo coupling. If κ < 0

and T decreases, so zH = 1/(2πT ) increases, then κT diverges by definition at the Kondo

temperature,

TK ≡
Λ

2π
e1/κ. (5.6)
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Using eq. (5.6) in eq. (5.2) to replace Λ with TK , we thus find

GO†O = −N
κ
− N

κ2

1

H
(
−1

2 + iQ− i ω
2πT

)
+H

(
−1

2 − iQ
)

+ ln
(

2T
TK

) . (5.7)

The form of GOO† is the same as GO†O, but with Q→ −Q.

5.1 Unscreened phase: poles in the Green’s function

Clearly GO†O in eq. (5.7) has a pole whenever

H

(
−1

2
+ iQ− i ω

2πT

)
+H

(
−1

2
− iQ

)
+ ln

(
2T

TK

)
= 0. (5.8)

Given values for Q and T/TK , we can thus find the poles of GO†O by solving eq. (5.8) for

ω/(2πT ).

Because the form of GOO† is the same as GO†O, but with Q → −Q, if

ω = Re (ω) + i Im (ω) is a pole of GO†O, then −ω = −Re (ω) + i Im (ω) will be a

pole of GOO† . In other words, the poles of GO†O and GOO† come in pairs mirrored about

the imaginary axis in the ω-plane.

Figure 4 shows our numerical results for the positions of poles of GO†O (black dots) and

GOO† (gray diamonds) in the complex ω/(2πT ) plane, for the representative value Q = 0.5,

for five temperatures: T/TK = 4.92, 1.34, 0.895, 0.671, 0.447. Figure 4 shows that each of

GO†O and GOO† has a sequence of poles descending down into the complex plane, i.e. with

decreasing imaginary part, spaced apart from one another by an amount ω/(2πT ) ≈ 1,

and with Re (ω/2πT )→ Q as Im (ω/2πT )→ −∞.

As T/TK decreases, the most significant change in figure 4 occurs in the position of

the “lowest” poles, meaning the poles nearest the origin at T/TK = 4.92 (figure 4 (a). As

T/TK decreases, the lowest poles move towards the origin (figure 4 (b)), reach the origin

at the critical temperature T/TK = 0.895 (figure 4 (c)), and then move into the upper half

of the complex ω/(2πT ) plane (figure 4 (d) and (e)), signaling an instability. For any other

non-zero Q, the plots of the pole positions are qualitatively similar to those in figure 4. In

particular, as T/TK decreases the lowest poles always pass through the origin and into the

upper half of the complex plane, signaling an instability.

However, Q = 0 is slightly different. When Q = 0, so that H (−1/2− iQ) =

H (−1/2) = −1.368 . . . is real-valued, the only imaginary term in eq. (5.8) is in the argu-

ment of the harmonic number, which is ∝ Re
(

ω
2πT

)
. As a result, solutions of eq. (5.8) must

have Re
(

ω
2πT

)
= 0. Clearly, when Q = 0 the particle-hole symmetry Re (ω)→ −Re (ω) is

restored. Figure 5 shows our numerical results for the positions of poles of GO†O (black

dots) and GOO† (gray diamonds) in the complex ω/(2πT ) plane for Q = 0, for the temper-

atures T/TK = 44, 8, and 4. All the poles are now on the imaginary axis, but otherwise

we observe similar behavior to the |Q| > 0 cases: as T/TK decreases, the lowest poles in

figure 5 (a) pass through the origin, now at a critical temperature T/TK = 8 in figure 5

(b), and then cross into the upper half of the complex plane in figure 5 (c).

Since the instability always appears as poles passing through the origin and into the

upper half of the complex plane, we can determine the critical temperature Tc easily, as
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Figure 4. The positions of poles in GO†O (black dots) and GOO† (gray diamonds) in the complex

ω/(2πT ) plane, determined by solving eq. (5.8) numerically, for Q = 0.5 and T/TK equal to (a)

4.92, (b) 1.34, (c) 0.895, (d) 0.671, and (e) 0.447. As T/TK decreases, the “lowest” poles, meaning

the poles closest to the origin at T/TK = 4.92 (a), move towards the origin (b), reach the origin

at T/TK = 0.895 (c), and then pass into the upper half of the complex ω/(2πT ) plane (d and e),

producing an instability.

the temperature where the poles reach the origin: in eq. (5.8) we set ω = 0 and then solve

for T/TK = Tc/TK , with the result

ln

(
Tc
TK

)
= −H

(
−1

2
+ iQ

)
−H

(
−1

2
− iQ

)
− ln 2 = −2 Re

[
H

(
−1

2
+ iQ

)]
− ln 2.

(5.9)

figure 6 shows Tc/TK as a function of Q, which has a maximum Tc/TK = 8 at Q = 0,

decreases monotonically as |Q| increases, and goes to zero as |Q| → ∞.

As mentioned in section 1, our results for the movement of ω∗ differ dramatically from

those of the standard (non-holographic) Kondo model, at large N and at leading order

in perturbation theory in λ [75]. In that model, the poles are determined by a condition

identical to eq. (5.8), but without the ln (2T/TK) term. As a result, the lowest pole sits
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Figure 5. The positions of poles in GO†O (black dots) and GOO† (gray diamonds) in the complex

ω/(2πT ) plane, determined by solving eq. (5.8) numerically for Q = 0 and T/TK equal to (a) 44, (b)

8, and (c) 4. Compared to the Q > 0 case in figure 4, the poles now all lie on the imaginary axis (the

black dots and gray diamonds overlap), but otherwise exhibit similar behavior: as T/TK decreases,

the lowest poles from (a) move up, reach the origin at the critical temperature T/TK = 8 in (b)

and then cross into the upper half of the complex ω/(2πT ) plane in (c), signaling an instability.
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Q

Tc/TK

Figure 6. The critical temperature Tc in units of TK , as a function of Q, from eq. (5.9).

exactly at ω = 0 for all T . The ln (2T/TK) term is thus repsonsible for the non-trivial

movement of ω∗, relative to the standard Kondo model. Indeed, the ln (2T/TK) term in

eq. (5.8) can be viewed as arising from the renormalization of λ, i.e. as a strong coupling

effect arising from working non-perturbatively in both λ and the ’t Hooft coupling.

We have been able to compute the position and residue of the poles analytically (with-

out numerics) in two limits: T � Tc and T just above Tc (T & Tc). In each case, we find a

residue Z with non-zero imaginary part, indicating that ρO†O will exhibit Fano resonances,

as we will confirm in subsection 5.2.

In terms of T/Tc (instead of T/TK), GO†O takes a particularly simple form: using

eq. (5.9) to re-write eq. (5.7), we find

GO†O = −N
κ
− N

κ2

1

H
(
−1

2 + iQ− i ω
2πT

)
−H

(
−1

2 + iQ
)

+ ln
(
T
Tc

) . (5.10)
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If T � Tc, or equivalently ln (T/Tc)� 1, then H
(
−1

2 + iQ− i ω
2πT

)
must also be large

for GO†O to have a pole. The Harmonic numbers H(n) grow large either when n → ∞
with |Arg (n) | < π, where H(n) → ln(n), or when n approaches a negative integer, as

apparent from the series representation

H(n) =
∞∑

k=1

(
1

k
− 1

n+ k

)
. (5.11)

We are interested in poles near the origin of the complex ω-plane, rather than poles at large

|ω|, since the former have a larger effect on the spectral function, so we will only consider

the poles where H
(
−1

2 + iQ− i ω
2πT

)
has argument equal to a negative integer. Explicitly,

in the GO†O in eq. (5.10), near such a pole we use eq. (5.11) to take

H

(
−1

2
+ iQ− i ω

2πT

)
−H

(
−1

2
+ iQ

)
≈ −1

−1
2 + iQ− i ω

2πT + k
, (5.12)

with k = 1, 2, 3, . . .. In that approximation, and with ln (T/Tc)� 1, the GO†O in eq. (5.10)

becomes

GO†O ≈ −
N

κ
− N

κ2

1
−1

− 1
2

+iQ−i ω
2πT

+k
+ ln (T/Tc)

. (5.13)

The pole’s position ω∗ = ω∗R + iω∗I and residue Z = ZR + iZI are then given by

ω∗

2πT
= Q+ i

(
−k +

1

2
+

1

ln (T/Tc)

)
, Z = −N

κ2

i (2πT )
(

ln
(
T
Tc

))2 , (5.14)

where the lowest pole has k = 1, and the higher poles have k = 2, 3, . . .. The residue Z in

eq. (5.14) is purely imaginary, ZR = 0, so (recalling table 1 in section 4) we expect ρO†O
will have a q = 1 symmetric Fano resonance.

Eq. (5.10) makes obvious the pole at ω = 0 when T = Tc. For T just above Tc, T & Tc,

we can obtain this pole’s position and residue by expanding eq. (5.10) in T around Tc and

simultaneously in ω around ω = 0. For the expansion in ω we use

H

(
−1

2
+ iQ− i ω

2πT

)
−H

(
−1

2
+ iQ

)
= −ψ′

(
1

2
+ iQ

)
iω

2πT
+O

(( ω

2πT

)2
)
, (5.15)

where ψ′(n) = ∂nψ(n) denotes the first derivative of the digamma function ψ(n). The

pole’s position ω∗ = ω∗R + iω∗I and residue Z = ZR + iZI are then given by

ω∗

2πTc
=

−i
ψ′
(

1
2 + iQ

) (T/Tc − 1) , Z =
−i

ψ′
(

1
2 + iQ

) (2πTc)
N

κ2
, (5.16)

as derived in ref. [42]. As T → T+
c , both ω∗R and ω∗I vanish linearly, i.e. as T/Tc − 1, with

slopes determined by Q alone. Figure 7 shows these slopes as functions of Q. In particular,

figure 7 (b) shows that the magnitude of ωI ’s slope is largest when Q = 0 and decreases

monotonically as |Q| increases.

The residue Z in eq. (5.16) is in general complex-valued, so when T & Tc, the lowest

pole in GO†O will produce a Fano resonance in ρO†O. Plugging the Z in eq. (5.16) into
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Figure 7. The slope of (T/Tc − 1) of the lowest pole in GO†O for T just above Tc, as functions of

Q, from eq. (5.16). (a) The slope of the real part of the pole, ω∗R, in units of 2πTc. (b) The slope

of the imaginary part of the pole, ω∗I , in units of 2πTc.
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Figure 8. The Fano/asymmetry parameter q as a function of Q for T & Tc, obtained by plugging

the residue Z in eq. (5.16) into eq. (4.7) for q. The limits Q → −∞, 0, +∞ produce symmetric

Fano resonances with q → 0, 1, +∞, respectively.

eq. (4.7) gives us the Fano/asymmetry parameter q as a function of Q, shown in figure 8.

Symmetric Fano resonances will occur when Q → −∞, 0, +∞, where q → 0, 1, and

∞, respectively, corresponding to a Fano anti-resonance, symmetric Fano resonance, and

Lorentzian resonance (figures 2 (b), (c), and (d)), respectively.

5.2 Unscreened phase: spectral function

The spectral function ρO†O in the unscreened phase is trivial to compute from GO†O in

eq. (5.10):

ρO†O=−2 ImGO†O=2
N

κ2
Im


 1

H
(
−1

2 + iQ− i ω
2πT

)
−H

(
−1

2 + iQ
)

+ ln
(
T
Tc

)


 , (5.17)
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Figure 9. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for the representative

value Q = 0.5 and in the T � Tc regime, namely for (a) T/Tc = 1015 and (b) T/Tc = 1012 (dotted),

109 (dot-dashed), 106 (dashed), and 103 (solid).

where we now restrict to real-valued ω. In our case, ρO†O vanishes when ω → 0 or

|ω| → ∞, in the latter case vanishing as (ln |ω|)−2, ultimately because the Harmonic

numbers are asymptotically logarithmic, as mentioned above. Such (ln |ω|)−2 behavior

means our ρO†O cannot be exactly ρFano in eq. (4.3), since ρFano involves only powers of ω,

with no logarithms. Nevertheless, we have shown in subsection 5.1 that the lowest pole in

GO†O generically has residue with non-zero imaginary part, so we expect Fano resonances

in ρO†O at ω near the real part of the lowest pole’s position, ω∗R.

Figure 9 shows ρO†O/
(
N/κ2

)
as a function of ω/(2πT ) for the representative value

Q = 0.5 and in the T � Tc regime, namely from T/Tc = 1015 (figure 9 (a)) down to

T/Tc = 103 (figure 9 (b)). From the T � Tc results in eqs. (5.13) and (5.14), we expect

ρO†O to have a q = 1 symmetric Fano resonance when ω equals the real part of the lowest

pole’s position, ω∗R, which is ω∗R = Q when T � Tc. Sure enough, for sufficiently high

T/Tc, as in figure 9 (a), ρO†O has an approximately q = 1 symmetric Fano resonance at

ω ≈ ω∗R ≈ Q. As T/Tc decreases through twelve orders of magnitude, the asymmetry

of the resonance appears to increase, although the position changes by only ≈ 5%:

ω∗R ≈ 0.499 when T/Tc = 1015, while ω∗R ≈ 0.475 when T/Tc = 103. We have confirmed

numerically that as T/Tc decreases through the values in figure 9, the peak value of the

resonance grows as 1/ (ln(T/Tc))
2, consistent with the T � Tc results for ω∗I and ZI in

eq. (5.14). Crucially, the resonance in figure 9 is not at the particle-hole symmetric value

ω = 0, and so is not the Kondo resonance — as expected, since the Kondo resonance is

generically absent at large-N in the unscreened phase.

Figure 10 shows ρO†O/
(
N/κ2

)
as a function of ω/(2πT ) for Q = 0.5 from T/Tc = 10

(figure 10 (a)) down to T/Tc = 1.5 (figure 10 (b)), including T/Tc = 5.5, corresponding

to T/TK = 4.92 (figure 4 (a)), and T/Tc = 1.5, corresponding to T/TK = 1.34 (figure 4

(b)). In figure 10, as T/Tc decreases, we see four changes in the resonance. First, the

peak of the resonance moves towards ω = 0, following the position of the lowest pole in

GO†O. For example, compare the position of the peak in ρO†O at T/Tc = 5.5 or 1.5 in

figure 10 (b) (dot-dashed or solid curve, respectively) to the position of the lowest pole in
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Figure 10. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for Q = 0.5 and (a)

T/Tc = 10, (b) 7.5 (dotted), 5.5 (dot-dashed), 3.5 (dashed), and 1.5 (solid).

GO†O in figure 4 (a) or (b), respectively. Second, the resonance grows taller, by about an

order of magnitude for the values of T/Tc in figure 10. Third, the peak grows narrower,

also by about an order of magnitude for the values of T/Tc in figure 10. Fourth, the

Fano/asymmetry parameter q increases. For example, q ≈ 2 for T/Tc = 10 (figure 10 (a))

and q ≈ 5 for T/Tc = 1.5 (figure 10 (b)).

Figure 11 shows ρO†O/
(
N/κ2

)
as a function of ω/(2πT ) for Q = 0.5 and in the T & Tc

regime, namely for T/Tc = 1.1 (figure 11 (a)) down to T/Tc = 1.001 (figure 11 (b)). The

four trends observed in figure 10 appear again in figure 11. First, the resonance moves

towards ω = 0, following the real part of the position of the lowest pole in GO†O in the

T & Tc regime, given by ω∗ in eq. (5.16), which in particular has ω∗R ∝ (T/Tc−1). Second,

the resonance grows taller. Indeed, plugging the T & Tc results for ω∗ and Z of eq. (5.16)

into eq. (4.5) reveals that the peak of the resonance increases as (T/Tc−1)−1. Such power-

law growth, rather than logarithmic growth, again indicates that the resonance is not a

Kondo resonance. Third, the resonance grows narrower, with a width proportional to the

imaginary part of the lowest pole in GO†O in the T & Tc regime, which from eq. (5.16)

has ω∗I ∝ (T/Tc − 1). Fourth, the Fano/asymmetry parameter q increases. For example,

q ≈ 5.8 for T/Tc = 1.1 (figure 10 (a)) and q ≈ 6.2 for T/Tc = 1.001 (figure 10 (b)).

In the T & Tc regime, we expect symmetric Fano resonances when Q → −∞, 0, ∞,

as discussed below eq. (5.16) and in figure 8. We indeed find such behavior, already at

relatively small values of |Q|. Figure 12 shows ρO†O/
(
N/κ2

)
as a function of ω/(2πT ) for

T/Tc = 1.01 and (a) Q = −1, (b) Q = 0, and (c) Q = +1. We clearly see symmetric

Fano (anti-)resonances with (a) q ≈ 0.0164, (b) q = 1, and (c) q ≈ 60.9, respectively, all

consistent with eq. (5.16) and figure 8.

For the special value Q = 0 nothing breaks the particle-hole symmetry Re ω → −Reω,

and all poles of GO†O have vanishing real part, as shown for example in figure 5. When

Q = 0 we thus expect a q = 1 symmetric Fano resonance at ω = 0 for all T/Tc. Figure 13

shows ρO†O/
(
N/κ2

)
as a function of ω/(2πT ) for Q = 0 and T/Tc from T/Tc = 100 down

to 2.5 (figure 13 (a)) and from T/Tc = 1.1 down to 1.01 (figure 13 (b)). We indeed find

q = 1 symmetric Fano resonances at ω = 0 for all T/Tc.
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Figure 11. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for Q = 0.5 and (a)

T/Tc = 1.1, (b) 1.01 (dotted), 1.0075 (dot-dashed), 1.005 (dashed), and 1.001 (solid).
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Figure 12. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for T/Tc = 1.01 and

(a) Q = −1, (b) Q = 0, and (c) Q = +1.
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Figure 13. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for Q = 0 and (a)

T/Tc = 100 (dotted), 10 (dot-dashed), 5 (dashed), and 2.5 (solid), and (b) T/Tc = 1.1 (dotted),

1.05 (dot-dashed), 1.03 (dashed), and 1.01 (solid).
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Figure 14. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for T/Tc = 0.75

(dashed) and 0.5 (solid), for (a) Q = 0.5 and (b) Q = 0.

We can also consider ρO†O in the unscreened phase when T < Tc, bearing in mind that

the unscreened phase is unstable when T < Tc because GO†O has a pole with Imω∗ > 0, as

discussed above. Figure 14 (a) shows ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for Q = 0.5

and for T < Tc, namely for T/Tc = 0.75 and 0.5, corresponding to T/TK = 0.671 and

0.447, respectively (figures 4 (d) and (e), respectively). We find a mirror version of the

four trends observed for T > Tc in figures 10 and 11. First, the resonance moves away

from ω = 0, with peak position at ω ≈ ω∗R. Second, the resonance grows shorter. Third,

the resonance grows wider. Fourth, the value of q decreases. In particular, q ≈ 0.11 for

T/Tc = 0.75 and q ≈ 0.06 for T/Tc = 0.5. Figure 14 (b) shows ρO†O/
(
N/κ2

)
, as a function

of ω/(2πT ) for Q = 0 and T/Tc = 0.75 and 0.5. In that case, as expected we find a q = 1

symmetric Fano resonance at ω = 0 whose height decreases as T decreases. All of these

behaviors are consistent with the motion of the lowest pole in GO†O in the complex ω plane

described in subsection 5.1.

In summary, we have learned two key lessons from the poles in GO†O and correspond-

ing resonances in ρO†O in the unscreened phase. First, we do not see a Kondo resonance,

consistent with the expectations of large-N Kondo models, where the Kondo effect (screen-

ing, phase shift, etc.) occurs only in the screened phase. Second, the resonances we find

are all Fano resonances, consistent with our interpretation that (0 + 1)-dimensional scale

invariance implies a continuum, and our Kondo coupling then breaks scale invariance and

produces a resonance that is necessarily immersed the continuum.

6 Screened phase

In this section we use the results of sections 2 and 3 to determine the excitation spectrum

of our system in the screened phase (T < Tc) by locating the poles in GO†O in the plane of

complex ω (subsection 6.1), and the corresponding peaks in ρO†O for real ω (subsection 6.2).

The main results of this section appeared in ref. [42], namely that for T just below

Tc (T . Tc), a pole of the form ω∗ ∝ −i〈O〉2 appears in GO†O, giving rise to a q = 1

symmetric Fano resonance in ρO†O, which is a signature of a Kondo resonance at large N .

In this section we will present some additional details about these results. Moreover, in
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appendix D we show, without using numerics, that ω∗ ∝ −i〈O〉2, but only for Q = −1/2,

although our methods should easily generalize to any Q.

As derived in eq. (3.81), in the screened phase

GO†O = N
R̂22/4

1− κR̂22/2
, (6.1)

and GO†O = GOO† = GOO = GO†O† , so we will henceforth discuss only GO†O. In the

unscreened phase we had the analytic (i.e. non-numerical) result for R̂Φ†Φ in eq. (5.2),

however, in this section our solutions for R̂22 will be numerical.

6.1 Screened phase: poles in the Green’s function

Clearly GO†O in eq. (6.1) has a pole whenever 1 − κR̂22/2 = 0. (Via eq. (3.81), sev-

eral other two-point functions have the same poles as well, namely GOO† , GOO, GO†O† ,

〈O(ω)At(−ω)〉κ and 〈O†(ω)At(−ω)〉κ.) Given values of Q and T/TK , we can thus find the

poles in GO†O by solving the equation 1 − κR̂22/2 = 0 for ω/(2πT ), which we have done

numerically. Our numerical results for the positions of the poles appear in figure 15, for

Q = 0.5 and with T/Tc = 1 in figure 15 (a), 0.588 (b), 0.389 (c), and 0.200 (d). When

T/Tc = 1, the poles’ positions agree with those we found in the unscreened phase in sub-

section 5.1, including in particular the lowest pole, ω∗, sitting at the origin of the complex

ω/(2πT ) plane. As T/Tc decreases the most significant change occurs in ω∗, which moves

straight down the imaginary axis. For any other non-zero Q, the plots of the pole positions

are qualitatively similar to those in figure 15, except for Q = 0, where all the higher poles

are on the imaginary axis. In particular, for all Q, including Q = 0, as T decreases the

most significant change occurs in ω∗, which moves straight down the imaginary axis.

For T just below Tc, T . Tc, we find that ω∗ is determined by 〈O〉. More specifically,

figure 16 shows that ω∗ ∝ − i〈O〉2 when T . Tc. In appendix D, for the case Q = −1/2

we show analytically (i.e. without numerics) that ω∗ ∝ − i〈O〉2 for T . Tc. Given the

mean-field scaling discussed in section 2, 〈O〉 ∝ (Tc − T )1/2 when T . Tc, we thus have

ω∗ ∝ −i|T − Tc| when T . Tc.

As mentioned in section 1, a pole in GO†O of the form ω∗ ∝ −i〈O〉2 is precisely the

manifestation of the Kondo resonance that we expect at large N [75]. In other words, in

addition to the dynamically generated scale TK , impurity screening, a phase shift, and so

forth, our holographic Kondo model also correctly captures an essential spectral feature of

the Kondo effect, namely the Kondo resonance.

6.2 Screened phase: spectral function

Knowing the result of subsection 5.2, that our spectral function ρO†O generically exhibits

a Fano resonance associated with the lowest pole ω∗ in GO†O, and knowing the result of

subsection 6.1, that in the screened phase ω∗ is purely imaginary and simply moves down

the imaginary axis as T decreases, we can anticipate how ρO†O will behave in the screened

phase. Given that ω∗ is purely imaginary, and hence does not break particle-hole symmetry

Reω → −Reω, we expect ρO†O to exhibit a q = 1 symmetric Fano resonance at ω = 0.
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Figure 15. Our numerical results for the positions of poles in GO†O in the complex ω/(2πT ) plane,

for Q = 0.5 and T/Tc equal to (a) 1, (b) 0.588, (c) 0.389, and (d) 0.200. As T/Tc decreases, the

most significant change occurs in the position of the lowest pole, which moves straight down the

imaginary axis.
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Figure 16. In the screened phase, the lowest pole in GO†O, ω∗, is purely imaginary (see figure 15).

The black dots denote Imω∗/(2πT ) as a function of κ2〈O〉2/(N2(2πT )) for Q = 0.5. The solid

black line is a numerical linear fit with slope ≈ −17.6 and intercept ≈ 5 × 10−6. The agreement

between the data and the fit shows that ω∗ ∝ −i〈O〉2.
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Figure 17. The spectral function, ρO†O/
(
N/κ2

)
, as a function of ω/(2πT ) for the representative

value Q = 0.5 and in the screened phase, for T/Tc = 0.998 (dots), 0.991 (diamonds), and 0.964

(squares). For all T/Tc we find a q = 1 symmetric Fano resonance at ω = 0 whose height decreases

and width increases as T/Tc decreases.

Moreover, given that ω∗ moves straight down the imaginary ω axis as T decreases, we

expect the Fano resonance’s width to increase as T decreases.

Our numerical results for ρO†O in the screened phase confirm these expectations. Fig-

ure 17 shows our numerical results for ρO†O/(N/κ
2) in the screened phase as a function of

real-valued ω/(2πT ) for Q = 0.5 and T/Tc ≈ 0.998, 0.991, and 0.964. We indeed find only

q = 1 symmetric Fano resonances whose width increases as T decreases. We also find that

the resonance’s height decreases rapidly as T decreases: in figure 17, T/Tc decreases by

only about 4%, from T/Tc ≈ 0.998 down to T/Tc ≈ 0.964, but the height of the peak drops

by roughly two orders of magnitude. As T decreases further (not shown in figure 17), ρO†O
continues to flatten, and indeed, as T approaches zero, ρO†O appears to approach zero for

all ω. All of these features of ρO†O appear for other values of Q as well, including Q = 0.

In the standard (non-holographic) large-N Kondo model with Abrikosov pseudo-

fermions, the Kondo resonance has width ∝ 〈O〉2 [75]. For T . Tc, the mean-field behavior

〈O〉 ∝ (Tc − T )1/2 then implies the width is ∝ Tc − T . When T → 0, 〈O〉 reaches a finite

value ∝ T
1/2
K at the minimum of its wine-bottle effective potential. The Kondo resonance

then has width ∝ TK , similarly to finite N .

Our model also exhibits mean-field behavior, and hence a width ∝ Tc−T when T . Tc.

However, in our screened phase, as T decreases our manifestation of the Kondo resonance,

i.e. the q = 1 symmetric Fano resonance in ρO†O, flattens out, and ultimately disappears,

so that at T = 0 apparently ρO†O is featureless. What accounts for the difference? In our

model, 〈O〉’s effective potential is apparently unbounded: we found numerically that 〈O〉
grows without bound as T decreases, because Φ grows without bound. Indeed, as T de-

creases, eventually the solutions for at(z) and Φ(z) violate the probe limit: the stress-energy
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tensor grows without bound, and eventually cannot be neglected in Einstein’s equation.

That is unsurprising, given that in our bulk action eq. (2.8), Φ’s potential is unbounded,

being only a mass term, M2Φ†Φ. Presumably, stabilizing Φ’s potential, for example with

a (Φ†Φ)2 term, would stabilize 〈O〉, and hence stabilize the width of our resonance.

7 Discussion and outlook

We studied the poles in retarded Green’s functions and the associated peaks in spectral

functions in the holographic Kondo model of refs. [31–34]. We had three main results. First

was the holo-ren of our model, which provided the covariant counterterms required to com-

pute the renormalized free energy and one- and two-point functions in our model. Second,

at all T , we found that generically the poles in our Green’s functions have residue with non-

zero imaginary part, giving rise to Fano resonances in spectral functions. Fano resonances

occur when a resonance appears in a continuum (in energy) of states. Our continuum

comes from (0 + 1)-dimensional scale invariance, inherited from (1 + 1)-dimensional scale

invariance of our holographic CFT. Our resonances are possible because we break scale in-

variance via our marginally-relevant Kondo coupling. Third, in the screened phase, where

〈O〉 6= 0, and with T just below Tc, we found a pole in GO†O of the form ω∗ ∝ −i〈O〉2,

precisely as expected for the Kondo resonance at large N [75]. In contrast, in the un-

screened phase ω∗ passed through the origin as T decreased through Tc, which was clearly

a strong coupling effect: in the standard (non-holographic) Kondo model at large N and

at leading order in perturbation theory in λ, in the unscreened phase ω∗ sits at the origin

of the complex ω plane for all T [75].

For the future, some obvious, immediate tasks involve improvements to our model. For

example, giving our bulk scalar Φ a quartic self-interaction could not only prevent Φ from

diverging at low T , and hence maintain the validity of the probe limit at low T , but could

also prevent our Kondo resonance from disappearing as T decreases, as we discussed in

subsection 6.2. Indeed, adding a quartic term would introduce an additional dimensionful

parameter in our model, which could presumably be fixed by demanding that our Kondo

resonance has width ∝ TK when T = 0.

However, as discussed in refs. [31, 32], all holographic quantum impurity models to

date, including ours, have a fundamentally worrying issue: the spin symmetry group is the

gauge group, SU(N). Holography provides direct access only to gauge-invariant quantities.

As a result, many important quantities that are not spin singlets, such as the magnetiza-

tion and spin susceptibility, are prohibitively difficult if not impossible to calculate using

holography. The obvious route to address this issue is to develop holographic quantum

impurity models in which spin is a global symmetry.

We have seen that even a minimal holographic quantum impurity model can produce

Fano resonances. Indeed, Fano resonances require simple, common ingredients, and thus

are very generic. We therefore expect Fano resonances in practically any holographic

quantum impurity model, under the key condition that conformal symmetry is broken at

the impurity. (Otherwise, all two-point functions at the impurity are determined by the

conformal symmetry, as we mentioned in the section 1.) In fact, more generally we expect
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asymmetric Fano resonances in practically any holographic system with a UV fixed point,

breaking of scale invariance, and breaking of particle-hole symmetry.

Most importantly, we expect our holographic Kondo model, other similar holographic

quantum impurity models, and variations of SYK models, to be useful in addressing many

of the open questions mentioned in section 1, about EE, quantum quenches, etc. We expect

Fano resonances in particular to play a crucial role in developing a precise “dictionary”

between theoretical models and experiments.
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A Near-horizon expansions in the screened phase

In this appendix we determine the near-horizon expansions of the response functions R11,

R12, R22, and R defined in eq. (3.34) in the screened phase. We use these expansions to

fix in-going boundary conditions at the horizon when we solve eq. (3.37) numerically for

the response functions.

In this appendix we will switch from the holographic radial coordinate z in eq. (2.6) to

the coordinate ζ ≡ zH − z, so that near the horizon, and using eq. (3.2) to translate from

z to r of eq. (3.1),

γ = − 2

z3
H

ζ +O(ζ2), ∂r =
√

2zHζ (1 +O(ζ)) ∂ζ ,
1

2
γ−1γ̇ =

√
zH
2ζ

(1 +O(ζ)) . (A.1)

Near the horizon, eqs. (3.17) for the background fields a0
t and φ0 thus become

∂2
ζa

0
t −

2

zH
∂ζa

0
t −

φ2
0

zHζ
a0
t = 0, ∂2

ζφ0 +
1

ζ
∂ζφ0 +

(
a0
t

)2
z2
H

4ζ2
φ0 −

M2

2zHζ
φ0 = 0, (A.2)

with regular solutions

a0
t = a(1)

(
ζ +

(2 + φ2
0)

2zH
ζ2 +O(ζ3)

)
, φ0 = φ(0)

(
1 +

M2

2zH
ζ +O(ζ2)

)
, (A.3)

with integration constants a(1) and φ(0), which we determine in our numerical solutions by

matching with the integration constants in the near-boundary expansions.
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Using the above, we can determine the near-horizon expansions of the fluctuations δat,

δφ, and δψ in eq. (3.18). Near the horizon, the constraint eq. (3.18a) becomes

− z3
H

2ζ
iω∂ζδat + 2φ2

(0)∂ζδψ = 0. (A.4)

with solutions

δat = c1 ζ
2+c2 (1 +O(ζ)) , δψ = c1

iωz3
H(2 + c2)

4φ2
(0)(1 + c2)

ζ1+c2 (1 +O(ζ)) , (A.5)

with integration constants c1 and c2. Inserting eq. (A.5) into eqs. (3.18b) and (3.18c)

gives us

(
ζ2∂2

ζ +
(2 + c2)z2

H

4(1 + c2)
ω2

)
δat =

2

zH
φ(0)a(1)ζ

2δφ, (A.6a)

(
ζ2∂2

ζ + ζ∂ζ +
z2
Hω

2

4

)
δφ = a(1)

ω2z5
H(2 + c2)

8φ(0)(1 + c2)
δat, (A.6b)

to leading order, with the linearly-independent solutions

δat = c1ζ
2+c2 (1 +O(ζ)) , (A.7a)

δφ = c1
zH

2φ(0)a(1)

(
c2 + 2

c2 + 1

)(
(c2 + 1)2 +

(zHω
2

)2
)
ζc2 (1 +O(ζ)) ,

c2 = ±izHω
2
, (A.7b)

δat = c1ζ
2+c2 (1 +O(ζ)) , (A.7c)

δφ = c1

z5
Ha(1)ω

2

8φ(0)

(
c2 + 2

c2 + 1

)(
(c2 + 2)2 +

(zHω
2

)2
)−1

ζ2+c2 (1 +O(ζ)) ,

c2 = −1± izHω
2
. (A.7d)

The most general in-going solution is a linear combination of the solutions with

c2 = −izHω
2
≡ c(1)

in , c2 = −1− izHω
2
≡ c(2)

in . (A.8)

Near the horizon, the definitions of the response functions in eq. (3.33) become

δȧt = R11(δat + iωδψ)− 2ζ

z3
H

R12δφ, (A.9a)

δφ̇ =
1

2
R22δφ+

1

2

(
R12 −

z3
H

2ζ
R
)

(δat + iωδψ), (A.9b)

δψ̇ =
iωz3

H

4ζφ2
(0)

δȧt. (A.9c)

Inserting the two linearly-independent in-going solutions of eq. (A.7) into eq. (A.9) leads

to four algebraic equations for the leading near-horizon behavior of the response functions,

– 50 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
9

ω2z3
H

4φ2
(0)

R11 +
(c

(1)
in + 1)2 +

(
zHω

2

)2

z2
Hφ(0)a(1)

R12 = −
√

2zH(c
(1)
in +1)ζ

1
2 , (A.10a)

ω2z3
H

4φ2
(0)

R11+
z2
Hω

2a(1)

4φ(0)

(
(c

(2)
in +2)2+

(zHω
2

)2
)−1

ζ2R12 = −
√

2zH(c
(2)
in +1)ζ

1
2 , (A.10b)

1

2
R22−

a(1)z
2
Hω

2

4φ(0)

(
(c

(1)
in +1)2+

(zHω
2

)2
)−1

ζ

(
R12−

z3
H

2ζ
R
)

=
√

2zHζ
− 1

2 c
(1)
in , (A.10c)

1

2
R22 −

(c
(2)
in + 2)2 +

(
zHω

2

)2

z2
Hφ(0)a(1)

ζ−1

(
R12 −

z3
H

2ζ
R
)

=
√

2zH(c
(2)
in + 2)ζ−

1
2 , (A.10d)

with solutions

R11 = i
2
√

2φ2
(0)

ωz
3/2
H

√
ζ

{
1 + ζ

(
3

4zH
−

2iφ2
(0)

ωz2
H(1− iωzH)

− iM2ω

1− iωzH

)
+O(ζ2)

}
, (A.11a)

R22 = −i
√

2ωz
3/2
H√
ζ

{
1− ζ

(
3

4zH
− iM2

ωz2
H(1− iωzH)

)
+O(ζ2)

}
, (A.11b)

R12 = −
√

2z
5/2
H a(1)φ(0)

1− iωzH
√
ζ

{
1− ζ

(
iω

4(2− iωzH)
+

M2ω(3i+ ωzH)

2(1− iωzH)(2− iωzH)

+

(
(2i+ ωzH)(1 + ω2z2

H) + 2i
)
φ2

(0)

2ωz2
H(1− iωzH)(2− iωzH)

)
+O(ζ2)

}
, (A.11c)

which are the main results of this appendix. Inserting eq. (A.11) into the general solution

for R in eq. (3.36) then gives us

R = C(ω)

√
2

z
3/2
H

(
ζ

1
2

+izHω +O(ζ3/2)
)
, (A.12)

and hence in-going boundary conditions require that C(ω) = 0 and thus R = 0, as adver-

tised in subsection 3.2.2. As a result, the Riccati equations in eq. (3.35) simplify to those

in eq. (3.37).

B Near-boundary expansions

In this appendix we determine the general Fefferman-Graham (FG) asymptotic expansions

of the AdS2 fields in our model. As mentioned at the beginning of section 3 these FG

expansions involve a number of subtleties, related to the special form of the FG expansion

of gauge fields in AdS2. In particular, the leading asymptotic mode of the gauge field is

the charge Q instead of the chemical potential µ, unlike gauge fields in higher-dimensional

AdS spacetimes, and moreover the value of Q affects the FG expansion of the scalar field

Φ. As a result, a well-defined space of asymptotic solutions requires keeping Q fixed, which

corresponds to an asymptotic second class constraint on the space of solutions. Such a
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constraint is unusual, compared to many holographic systems, although the constraint

required for Lifshitz asymptotics in Einstein-Proca theory [97, 98] is analogous.

A direct result of the constraint is that, if we allow fluctuations about a background

solution to have non-zero variation of Q, then the background and fluctuations need

not have the same FG expansions. Indeed, in that case, higher order fluctuations are

increasingly dominant asymptotically, relative to both the background solutions and to

the lower order fluctuations. As a result, the small fluctuation approximation breaks

down asymptotically, and we are forced to work with a cut-off near the boundary, until

fluctuations proportional to δQ are set to zero. In addition, generically no well-defined

asymptotic solutions to the full non-linear equations of motion exist, so we must consider

the FG expansions of the background and of the fluctuations separately. Below we

determine the FG expansions both for the background and the fluctuations, discussing

separately fluctuations with δQ 6= 0 and δQ = 0.

Note about notation. In this appendix and in appendix C, Olog(x) denotes a quantity

that asymptotes to zero like x logk(x) as x→ 0+, with k a non-negative integer.

B.1 Expansions of the background and the second class constraint

Upon choosing a gauge with At = 0, the equations of motion for at, φ, and ψ, eqs. (3.12),

become

ät −
1

2
γ−1γ̇ȧt − 2φ2(at − ∂tψ) = 0, (B.1a)

φ̈+
1

2
γ−1γ̇φ̇− ψ̇2φ+ γ−1∂2

t φ− γ−1(at − ∂tψ)2φ−M2φ = 0, (B.1b)

∂r(φ
2ψ̇) +

1

2
γ−1γ̇φ2ψ̇ − γ−1∂t

(
φ2(at − ∂tψ)

)
= 0, (B.1c)

γ−1∂tȧt = 2φ2ψ̇. (B.1d)

Given the asymptotic form of the metric, γ ∼ −e2r as r → +∞, as long as φ → 0

asymptotically (i.e. the dual operator is relevant), then the gauge field’s leading asymptotic

behavior is at ∼ erQ(t), with Q(t) an arbitrary function of time t. Moreover, Q2 enters φ’s

equation as a mass term, so that φ has an “effective mass” M2 −Q2, hence Q2 affects the

FG expansion of φ. A well-defined space of asymptotic solutions thus requires the (second

class) constraint that Q is fixed. The charge Q is not automatically conserved by the

equations of motion, due to the coupling to the charged scalar field. Charge conservation,

therefore, can only be imposed as a boundary condition.

As in ref. [31], we fix Q such that O has dimension 1/2, so that our Kondo coupling

O†O is classically marginal. The scalar’s effective mass must thus saturate the AdS2

Breitenlohner-Freedman bound:

M2 −Q2 = −1

4
. (B.2)

We want to determine the FG expansions with Q satisfying the constraint eq. (B.2). Cru-

cially, in the first three equations in (B.1), terms containing time derivatives affect only

sub-leading orders in the FG expansion: for the leading non-normalizable and normalizable
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orders, we can thus ignore all time derivatives in eqs. (B.1). For similar reasons, we can take

γ = −e2r for the purpose of determining the FG expansions. With these simplifications,

eqs. (B.1) become

ät − ȧt − 2φ2at = 0, (B.3a)

φ̈+ φ̇− ψ̇2φ+ e−2ra2
tφ−M2φ = 0, (B.3b)

∂r(φ
2ψ̇) + φ2ψ̇ = 0, (B.3c)

and hence the FG expansions of the AdS2 fields are

at = erQ− 2Q

(
1

3
α2r3 + (α2 − αβ)r2 + (2α2 − 2αβ + β2)r

)
+ µ(t) + · · · , (B.4a)

φ = e−r/2 (−α(t)r + β(t)) + · · · , (B.4b)

ψ = ψ−(t) + ψ+(t)r−1 + · · · , (B.4c)

where µ(t), α(t), β(t) and ψ±(t) are arbitrary functions of time, and . . . represent terms that

vanish as r →∞ faster than those shown, and are completely determined by those shown,

via the equations of motion. Inserting eqs. (B.4) into eq. (B.1d), which is the constraint

imposed by the AdS2 U(1) gauge invariance, and using eq. (B.2), we find ψ+ = 0 and
1
2α
−2∂tQ = 0. The FG expansions are thus parameterized by the arbitrary functions µ(t),

α(t), β(t) and ψ−(t). Moreover, µ(t) is defined only up to a U(1) gauge transformation,

µ(t)→ µ(t) + ∂tλ(t). We will refer to eqs. (B.4) as “background FG expansions,” because

Q is required to satisfy eq. (B.2). Fluctuations are allowed to violate eq. (B.2), which leads

to different FG expansions, as we will see.

B.2 Expansions of the response functions

In the unscreened phase, we want to find the FG expansions of the response functions

RΦ†Φ and RΦΦ† , using the Riccati equations in eq. (3.20). As above, to do so we may

ignore terms involving time derivatives, i.e. frequency ω, and we may set γ = −e2r, in

eq. (3.20), leading to

ṘΦ†Φ +RΦ†Φ +R2
Φ†Φ +

1

4
= 0, ṘΦΦ† +RΦΦ† +R2

ΦΦ† +
1

4
= 0, (B.5)

and hence the FG expansions of RΦ†Φ and RΦΦ† are

RΦ†Φ = −1

2
+

1

r − R̂Φ†Φ

= −1

2
+

1

r
+
R̂Φ†Φ

r2
+ · · · , (B.6a)

RΦΦ† = −1

2
+

1

r − R̂ΦΦ†
= −1

2
+

1

r
+
R̂ΦΦ†

r2
+ · · · , (B.6b)

where R̂Φ†Φ and R̂ΦΦ† are functions of ω, and . . . represent terms that vanish as r → ∞
faster than those shown, and are completely determined by those shown, via eq. (3.20).

In the screened phase, we instead need to solve instead the Riccati equations

eqs. (3.35), with R = 0, as required by in-going boundary conditions at the horizon,
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as shown in appendix A. Again ignoring terms involving time derivatives, and setting

γ = −e2r, eqs. (3.35) become

Ṙ11 −R11 +R2
11 −

1

2
e2rR2

12 − 2φ2
0 = 0, (B.7a)

Ṙ12 +R12 +R11R12 +
1

2
R12R22 + 4e−2rφ0a

0
t = 0, (B.7b)

Ṙ22 +R22 − e2rR2
12 +

1

2
R2

22 +
1

2
= 0. (B.7c)

These equations admit two distinct classes of asymptotic solutions, depending on whether

δQ(t) 6= 0 or δQ(t) = 0. We present both of these solutions in turn.

For fluctuations with δQ 6= 0, the defining relations in eqs. (3.33) and the asymptotic

solution for at in eq. (B.4) imply that asymptotically R11 ∼ 1. Eqs. (B.7) then determine

the leading asymptotic behavior of the response functions: R11 = 1 + Olog(e−r), R12 =

Olog(e−3r/2), R22 = −1+O(1/r). In eq. (B.7c), the term ∝ R2
12 is exponentially subleading

relative to the other terms, and hence can be ignored. The resulting equation for R22 then

admits an exact solution, with asymptotic expansion

R22 = −1 +
2

r − R̂22/2
+Olog(e−r), (B.8)

where R̂22 is an undetermined function of ω. Eqs. (B.7a) and (B.7b) then determine

R12 = − 4e−3r/2

r − R̂22/2

∫
dr
(
r − R̂22/2

)
e−r/2φ0(r)a0

t (r) +Olog(e−5r/2), (B.9a)

R11 = 1 + e−r
∫

drer
(

1

2
e2rR2

12 + 2φ2
0

)
+Olog(e−2r). (B.9b)

Expanding these then leads to the FG expansions

R11 = 1 + e−r
(

8Q2α2
0

45
r5 − Q2α0

9
(R̂22α0 + 6β0)r4

+
1

18

(
(12−Q2R̂2

22)α2
0 + 12Q2(R̂22α0 + β0)β0

)
r3

+

(
Qα0

36
(24R̂12 +Qα0R̂3

22)− 2α0β0 −Q2β2
0R̂22

)
r2

+
1

72

(
Qα0R̂22(24R̂12 +Qα0R̂3

22)

−12Q(12R̂12 +Qα0R̂3
22)β0 + 36(4 +Q2R̂2

22)β2
0

)
r

+R̂11 +O(1/r)

)
+Olog(e−2r), (B.10a)

R12 = e−
3r
2

(
4Qα0

3
r2 − Q

3
(α0R̂22 + 6β0)r − QR̂22

6
(α0R̂22 − 6β0) +

R̂12

r
+
R̂12R̂22

2r2

+
R̂12R̂2

22

4r3
+O(1/r4)

)
+Olog(e−5r/2), (B.10b)

R22 = −1 +
2

r
+

1

r2
R̂22 +

1

2r3
R̂2

22 +
1

4r4
R̂3

22 +
1

8r5
R̂4

22 +O(1/r6), (B.10c)
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where R̂11, R̂12 and R̂22 are undetermined functions of the frequency ω. If we plug

eqs. (B.10) into the defining relations eqs. (3.33), then these asymptotic expansions lead to

linear fluctuations that are asymptotically more divergent that the background solutions

in eqs. (B.4) — an effect of the asymptotic second class constraint eq. (B.2), which is

violated infinitesimally by the linear fluctuations with δQ 6= 0. The second class constraint

also causes the integration constant R̂22 to enter the asymptotic expansions of R11 and

R12 before their corresponding integration constants R̂11 and R̂12. We must therefore

determine the asymptotic expansions of R22 and R12 beyond the order where R̂22 and R̂12

appear linearly, since these terms enter in the expansions of R11 and R12.

While fluctuations with δQ 6= 0 have three integration constants, R̂11, R̂12 and R̂22,

fluctuations with δQ = 0 have only one, as we will now show. For fluctuations with

δQ = 0, the three response functions have the leading order behavior R11 = Olog(e−r),

R12 = Olog(e−3r/2), and R22 = −1 + O(1/r). Eq. (B.7) then implies that R22 is again

given by eq. (B.8), while

R11 = −er
∫ ∞

r
dr′e−r

′
(

1

2
e2r′R2

12 + 2φ2
0

)
+Olog(e−2r), (B.11a)

R12 =
4e−r/2

r − R̂22/2

∫ ∞

r
dr′e−3r′/2

(
r′ − R̂22/2

)
φ0(r′)a0

t (r
′) +Olog(e−5r/2). (B.11b)

Expanding eq. (B.11) using eq. (B.4) then gives the FG expansions

R11 = e−r
(
− (1 + 4Q2)α2

0r
2 + α0

(
2(1 + 4Q2)β0 − (1 + 20Q2)α0

)
r (B.12a)

+

(
(1 + 28Q2)α0β0 − (1 + 4Q2)β2

0 −
1

2
(1 + 4(2R̂22 + 21)Q2)α2

0

)
+O(1/r)

)

+Olog(e−2r),

R12 = e−
3r
2

(
− 4Qα0r + 4Q(β0 − 2α0) +

4Qβ0 − 2(R̂22 + 4)Qα0

r
+O

(
1

r2

))
(B.12b)

+Olog(e−
5r
2 ),

R22 = −1 +
2

r
+

1

r2
R̂22 +

1

2r3
R̂2

22 +
1

4r4
R̂3

22 +
1

8r5
R̂4

22 +O(1/r6). (B.12c)

Inserting the expansions for R11, R12 and R22 for either δQ 6= 0 or δQ = 0 into eqs. (3.34),

then gives

RΦ†Φ = −1

2
+

1

r
+
R̂Φ†Φ

r2
+ · · · , RΦΦ† = −1

2
+

1

r
+
R̂ΦΦ†

r2
+ · · · , RΦΦ =

R̂ΦΦ

r2
+ · · · ,
(B.13)

which is of the same form as the unscreened case, eq. (B.6), but now with the constraints

R̂Φ†Φ = R̂ΦΦ† = R̂ΦΦ + 1/κ =
1

4
(R̂22 + 2/κ), (B.14)

where κ = β0/α0 comes from the background solution for the scalar, as discussed below

eq. (3.64).
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C Further details of holographic renormalization

In this appendix we summarize some technical results related to the holo-ren in subsec-

tion 3.3. In particular, we determine asymptotically the functions g0(v), g1(v), and g2(v),

defined in eq. (3.47), up to the relevant order for renormalizing the two-point functions,

and we obtain explicit expressions for the renormalized response functions that enter in

the two-point functions.

C.1 Determining the boundary counterterms

We write g0 and g1 as in eq. (3.49): g0 = −uo + h0 and g1 = −1 + h1. Plugging these

into eq. (3.48) and expanding in v, and using the fact that h0, h1, g2 and g3 are all Olog(v)

as v → 0, we find

h0−v(h′20 +1/4) = Olog(v2), h1−v(2h′0h
′
1+2) = Olog(v2), g2−v(h′21 +2h′0g

′
2) = Olog(v2),

(C.1)

where primes denote ∂v (see appendix B for the definition of Olog). A simple power-

counting argument using the near-boundary asymptotic expansion of the scalar field in

eq. (B.4) suffices to show that in general only terms up to order Olog(v) can potentially

contribute to near-boundary divergences, so we can neglect all the right-hand-sides in

eqs. (C.1). The resulting equations can then be solved exactly.

The most general solution for h0(v) can be expressed implicitly in the form

1

1− λ(v)
+ log(1− λ(v)) = q0 + log 2− 1

2
log v, λ(v) ≡

√
4h0(v)

v
− 1, (C.2)

where q0 is an integration constant. Expanding this solution for small v, we obtain

h0(v) = v

(
1

2
+

1

log v
+

2q + 1

(log v)2
+

4q2

(log v)3
+

8q2(q − 1)

(log v)4
+

16q2
(
q2 − 7

3q + 1
)

(log v)5

+
32q2

(
q3 − 47

12q
2 + 4q − 1

)

(log v)6
+ · · ·

)
, (C.3)

where q ≡ log(− log v) + c0. The equations for h1(v) and g2(v) are linear, with general

solutions

h1 =ϑ(v)

(
q1−

∫ v

0

dv̄

ϑ(v̄)h′0(v̄)

)
, g2 =ϑ(v)

(
q2−

1

2

∫ v

0

dv̄ h′1
2(v̄)

ϑ(v̄)h′0(v̄)

)
, ϑ≡exp

(∫ v

0

dv̄

2v̄h′0(v̄)

)
,

(C.4)

where v̄ is a dummy integration variable, and q1 and q2 are integration constants. Expand-
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ing these solutions at small v gives us

ϑ(v) =
v

(log v)2

(
1+

4q

log v
+

4q(3q−2)

(log v)2
+

8q
(
4q2−7q+2

)

(log v)3
+

16q
(
5q3− 47

3 q
2+12q−2

)

(log v)4

+
80q

(
36q4 − 171q3 + 238q2 − 108q + 12

)

15(log v)5
+ · · ·

)
, (C.5a)

h1(v) = −2

3
v log v

(
1− 2q

log v
+

4q

(log v)2
+

4q(q − 2)

(log v)3
+

8q
(

2
3q

2 − 3q + 2
)

(log v)4

+
8q
(
3q3 − 22q2 + 36q − 12

)

3(log v)5
+ · · ·

)
+ q1ϑ(v), (C.5b)

g2(v) = − 4

45
v(log v)3

(
1− 6q − 5

2

log v
+

12q2 + 2q − 5

(log v)2
− 8q3 + 26q2 − 6q − 10 + 15q1

2

(log v)3
(C.5c)

+
16q3 + 52q2 − 12q − 5(4− 3q1)

(log v)4
+

2q
(
12q3 + 4q2 − 174q + 45q1 − 24

)

3(log v)5
+ · · ·

)

+ q2ϑ(v).

The integration constants q0, q1, q2 correspond respectively to the constants R̂22, R̂12

and R̂11 in the near-boundary expansions of the response functions in eq. (B.10). This can

be deduced as follows. Combining (3.34) and (3.46), and using the expansion in eq. (3.47)

and eqs. (C.1), we obtain

RG11 = 1 + h1 + 2Q2g2 +Olog(e−2r), (C.6a)

RG12 = −2h′1e
−2rφat +Olog(e−5r/2), (C.6b)

RG22 = −4φ2h′′0 = −2 +
1

2h′0
+Olog(e−r), (C.6c)

where the last equality in eq. (C.6c) follows from the first in eq. (C.1). As in eq. (3.46),

the superscript G indicates that these response functions are obtained from eq. (3.42), not

the full on-shell action. Moreover, taking πGφ = πGΦ + πG
Φ†

(see eq. (3.45)) with the πφ in

eq. (3.5) gives

v̇ = −2vh′0 +Olog(e−2r). (C.7)

eqs. (C.6) and (C.7), together with eqs. (C.1), suffice to show that RG11, RG12 and RG22

satisfy the corresponding eqs. (B.7), with the important caveat that φ0 in eqs. (B.7) is

replaced by φ, i.e. the solution that satisfies the first order eq. (C.7). Since φ0 and φ have

the same asymptotic behavior, apart from the values of the coefficients α and β, RG11, RG12

and RG22 have near-boundary expansions of the same form as those of R11, R12 and R22,

and hence they should have the same integration constants. This implies that q0, q1 and

q2 are related to R̂22, R̂12 and R̂11, respectively, although the explicit map between these

integration constants is rather complicated.

However, the fact that RG11, RG12 and RG22 satisfy eqs. (B.7) with φ0 replaced by φ,

does have implications for the boundary counterterms. We have just argued that the near

boundary expansion of RG22 is of the same form as that of R22 in eq. (B.10), but with some
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integration constant R̂G22 that is related to q0. Since v = φ2, eq. (C.7) implies that φ has a

near-boundary expansion of the form in (B.4) with

β =
(
R̂G22/2− 2

)
α. (C.8)

If we want to use RG11, RG12 and RG22 as counterterms to renormalize R11, R12 and R22,

respectively, we must set β = β0 and α = α0, since these are the values appearing in

the near boundary expansions in eq. (B.10). However, eq. (C.8) then forces us to set

R̂G22 = 4 + 2/κ. This poses no problem for renormalizing R22, but as we pointed out

earlier, an unusual feature of the asymptotic expansions in eq. (B.10) is that R11 and R12

contain divergences that involve R̂22, which is a dynamical quantity determined by the

near-horizon conditions. Setting R̂G22 = 4 + 2/κ will thus not renormalize R11 and R12.

This is similar to cases where a source for an irrelevant operator is turned on perturbatively,

much like our δQ, and additional multi-trace counterterms are required [55]. In our case

this means RG11(v) and RG12(v) should be considered functions of Rren
22 = R22 + 2 − 1

2(hct
0 )′

as well, i.e. RG11(v0;Rren
22 ) and RG12(v0;Rren

22 ), where v0 = φ2
0 should evaluated on the

background. These functions can be determined by demanding they satisfy exactly the

same equations as R11 and R12, eq. (B.7).

As discussed in section 3, an additional complication arises due to the logarithmic

dependence of the functions g0(v), g1(v), and g2(v) on v, which forces us to introduce

explicit cutoff dependence in the counterterms, to ensure they are local functions of the

scalar source. For example, keeping only terms that contribute to the near-boundary

divergences we set

gct0 (v) = v (1/2− 1/r)− uo, (C.9)

which suffices to renormalize the on-shell action (evaluated with δQ = 0), as well as R22.

We will not give the explicit expressions for the counterterms Rct
12 and Rct

11 here, but

they can be constructed as outlined above, and they allow us to obtain the renormalized

quantities

R∞11 ≡ lim
r→∞

(
er(R11 +Rct

11)
)

= R̂11 + C11(R̂22, α0, β0), (C.10a)

R∞12 ≡ lim
r→∞

(
re3r/2(R12 +Rct

12)
)

= R̂12 + C12(R̂22, α0, β0), (C.10b)

R∞22 ≡ lim
r→∞

(
r2(R22 +Rct

22)
)

= R̂22, (C.10c)

where C11(R̂22, α0, β0) and C12(R̂22, α0, β0) are determined by the specific choice for the

counterterm functions.

C.2 Renormalized response functions

To determine the renormalized response functions, and hence the corresponding two-point

functions, we need to consider the variation of the one-point functions. Moreover, if we

want to allow δQ 6= 0, then the variations of the one-point functions must be considered

at a radial cutoff, and the cutoff should be removed only in the end.
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A general variation of the AdS2 gauge field momentum at a radial cutoff yields

δπta = −N√−γγ−1δȧt = −N√−γγ−1
(
Raaδat + γRaΦδΦ + γδΦ†RaΦ†

)
,

= −N√−γγ−1
(
Rren
aa δa

ren
t + γRren

aΦ δΦ + γδΦ†Rren
aΦ†

)
, (C.11)

where we have used the definitions in eqs. (3.53) and introduced the renormalized response

functions

Rren
aa =

Raa
1 +Raa (Gct

u + 2uGct
uu)

, (C.12)

Rren
aΦ =

RaΦ −Raa 1
N

√−γ γ−1Gct
uvπ

t
aΦ
†

1 +Raa (Gct
u + 2uGct

uu)
, Rren

aΦ† =
RaΦ† −Raa 1

N

√−γ γ−1Gct
uvπ

t
aΦ

1 +Raa (Gct
u + 2uGct

uu)
.

Using the fact that R = 0 for solutions that satisfy ingoing boundary conditions at the

horizon, we easily find that the response functions Raa, RaΦ and RaΦ† are related to those

introduced in eqs. (3.30) and (3.33) as Raa = R11, RaΦ = γ−1RΦ†a, RaΦ† = γ−1RΦa.

However, since the one-point function associated with the AdS2 gauge field is given by

aren
t , we need to express δaren

t in terms of the variations of the other variables. Namely,

δaren
t =

−γ
Rren
aa

(
Rren
aΦ δΦ +Rren

aΦ†δΦ
† +

1

N
√−γ δπ

t
a

)
=−

(
Rren
πtaΦδΦ +Rren

πtaΦ†δΦ
† +Rren

πtaπ
t
a
δπta

)
,

(C.13)

where

Rren
πtaΦ =

γRren
aΦ

Rren
aa

=

(
γRaΦ −

1

N

√−γ Gct
uvπ

t
aΦ
†
)

(1 +Olog(e−r)), (C.14a)

Rren
πtaΦ† =

γRren
aΦ†

Rren
aa

=

(
γRaΦ† −

1

N

√−γ Gct
uvπ

t
aΦ

)
(1 +Olog(e−r)), (C.14b)

Rren
πtaπ

t
a

= −
√−γ
NRren

aa

= −
√−γ
N

(
1 +Raa

(
Gct
u + 2uGct

uu

) )
(1 +Olog(e−r)), (C.14c)

and we have used that Raa = 1 +Olog(e−r). These renormalized response functions at the

radial cutoff are directly related with the physical two-point functions in section 3.

Similarly, the generic variation of the renormalized scalar canonical momenta at the

radial cutoff gives

δπren
Φ† = −N√−γ

(
δΦ̇ + δ(Gct

v Φ)
)

= −N√−γ
(
RΦ†ΦδΦ +RΦ†Φ†δΦ

† + γ−1RΦ†aδat + δ(Gct
v Φ)

)

= −N√−γ
(
Rren

Φ†ΦδΦ +Rren
Φ†Φ†δΦ

†
)

+Rren
Φ†πta

δπta, (C.15a)

δπren
Φ = −N√−γ

(
δΦ̇† + δ(Gct

v Φ†)
)

= −N√−γ
(
RΦΦδΦ +RΦΦ†δΦ

† + γ−1RΦaδat + δ(Gct
v Φ†)

)

= −N√−γ
(
Rren

ΦΦδΦ +Rren
ΦΦ†δΦ

†
)

+Rren
Φπta

δπta, (C.15b)
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where

Rren
ΦΦ = RΦΦ + Gct

vv(Φ
†)2 +Olog(e−r),

Rren
Φ†Φ† = RΦ†Φ† + Gct

vvΦ
2 +Olog(e−r), (C.16)

Rren
ΦΦ† = RΦΦ† +

(
Gct
v + vGct

vv

)
+Olog(e−r),

Rren
Φ†Φ = RΦ†Φ +

(
Gct
v + vGct

vv

)
+Olog(e−r),

Rren
Φπta

=

(
RΦa −

√−γ
N
Gct
uvπ

t
aΦ
†
)(

1 +Olog(e−r)
)
,

Rren
Φ†πta

=

(
RΦ†a −

√−γ
N
Gct
uvπ

t
aΦ

)(
1 +Olog(e−r)

)
.

These renormalized response functions at the radial cutoff are also directly related with

the physical two-point functions in section 3.

Finally using eq. (3.34) and the limits in eq. (C.10), we can remove the radial cutoff

to obtain the renormalized response functions

R̂ren
ΦΦ† = lim

r→∞

(
r2Rren

ΦΦ†

)
= R̂ΦΦ† =

1

4
(R̂22 + 2β0/α0), (C.17a)

R̂ren
Φ†Φ = lim

r→∞

(
r2Rren

Φ†Φ

)
= R̂Φ†Φ =

1

4
(R̂22 + 2β0/α0), (C.17b)

R̂ren
ΦΦ = lim

r→∞

(
r2Rren

ΦΦ

)
= R̂ΦΦ =

1

4
(R̂22 − 2β0/α0), (C.17c)

R̂ren
Φ†Φ† = lim

r→∞

(
r2Rren

Φ†Φ†

)
= R̂Φ†Φ† =

1

4
(R̂22 − 2β0/α0), (C.17d)

R̂ren
Φπta

= lim
r→∞

(
re−r/2Rren

Φπta

)
= R̂Φπta

= −1

2

(
R̂∞12 − ω/α0

)
, (C.17e)

R̂ren
Φ†πta

= lim
r→∞

(
re−r/2Rren

Φ†πta

)
= R̂Φ†πta

= −1

2

(
R̂∞12 + ω/α0

)
, (C.17f)

R̂ren
πtaΦ† = lim

r→∞

(
re−3r/2Rren

Φπta

)
= R̂πtaΦ† = −1

2

(
R̂∞12 − ω/α0

)
, (C.17g)

R̂ren
πtaΦ = lim

r→∞

(
re−3r/2Rren

Φ†πta

)
= R̂πtaΦ = −1

2

(
R̂∞12 + ω/α0

)
, (C.17h)

R̂ren
πtaπ

t
a

= lim
r→∞

(
Rren
πtaπ

t
a

)
= R̂πtaπta =

1

N
R̂∞11, (C.17i)

where R̂∞11 and R̂∞12 are defined in eq. (C.10). Eqs. (C.17) are valid for the screened

phase only. In the unscreened phase, the scalar’s response functions R̂Φ†Φ and R̂ΦΦ† are

integration constants determined by imposing boundary conditions on the horizon, while

all other response functions vanish.

D Analytic derivation of the lowest pole in the screened phase

In this appendix we present an analytic (i.e. non-numerical) derivation of the behavior

ω∗ ∝ −i〈O〉2 of the lowest pole in the screened phase, for T . Tc.

In this appendix we use the metric in eq. (2.6), but with the re-scaling in eq. (5.3) to

produce dimensionless coordinates,

(z/zH , t/zH , x/zH)→ (z, t, x), (D.1)

– 60 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
9

which leaves the metric in eq. (2.6) invariant, except for h(z) = 1 − z2/z2
H → 1 − z2,

so the boundary remains at z = 0 but the horizon is now at z = 1. We also re-scale

at(z)zH → at(z), which is then dimensionless. After the re-scaling, Φ(z)’s asymptotic

expansion is that of eq. (5.4),

Φ(z) = αT z
1/2 ln z + βT z

1/2 + . . . , (D.2)

where here and below . . . represents terms that vanish faster than those shown when z → 0,

and the boundary condition α = κβ becomes αT = κTβT . We additionally re-scale to

produce a dimensionless frequency: ωzH = ω/(2πT ) → ω. Moreover, in this appendix we

exclusively use Q = −1/2.

We introduce fluctuations of the defect fields, for example at(z, t) = a0
t (z) + δat(z, t),

where a0
t (z) is the background solution and δat(z, t) is the fluctuation, and similarly

Φ(z, t) = Φ0(z) + δΦ(z, t), and Φ†(z, t) = Φ†0(z) + δΦ†(z, t). In the screened phase,

Φ0(z) 6= 0 and Φ†0(z) 6= 0. In this appendix we will assume the background solution is

real, Φ0(z) = Φ†0(z). Next we Fourier transform using ∂t → −iω, and use the same no-

tation for the Fourier transforms of the fluctuations, for example δat(z, ω). Linearizing

the equations of motion about in the fluctuations then gives the fluctuation equations (the

equivalent of eq. (3.18), but in the coordinates of eq. (D.1)),

δΦ′′ +
h′

h
δΦ′ +

(ω + a0
t )

2

h2
δΦ +

ω + 2a0
t

h2
Φ0δat = 0, (D.3a)

δΦ†
′′

+
h′

h
δΦ†

′
+

(ω − a0
t )

2

h2
δΦ† − ω − 2a0

t

h2
Φ†0δat = 0, (D.3b)

δa′′t +
2

z
δa′t −

2Φ†Φ

z2h
δat +

Φ0δΦ
†

z2h

(
ω − 2a0

t

)
− Φ†0δΦ

z2h
(ω + 2a0

t ) = 0, (D.3c)

ωz2δa′t + h
[
Φ0(δΦ′ − δΦ† ′)− Φ′0(δΦ− δΦ†)

]
= 0, (D.3d)

where prime denotes ∂z, for example Φ′ ≡ ∂zΦ.

We want the QNMs, that is, solutions for the fluctuations that are normalizable at

the boundary z = 0 and in-going at the horizon z = 1, which exist only for particular

ω [99, 100]. The asymptotic expansions of the fluctuations are

δat =
δQ

z
+ δµ+ . . . , δΦ = δαT z

1/2 log z + δβT z
1/2 + . . . . (D.4)

To guarantee normalizability, and specifically to guarantee that the asymptotic expansions

of the fluctuations do not have terms more divergent than the asymptotic expansions of

the background solutions, we must impose δQ = 0, which requires δαT = κ δβT , with the

same value of κ as the background solution Φ0(z).

We parameterize the solutions of eq. (D.3) as

δΦ(z, ω)=h−iω/2p(z)y(z, ω), δΦ†(z, ω)=h−iω/2p(z)y†(z, ω), δat(z, ω)=h1−iω/2a(z, ω),

(D.5)

where the powers of h are determined by the in-going boundary condition at the horizon,

p(z) is the background solution Φ0(z) with α = 1, so that asymptotically

p(z) = z1/2 log z +
1

κT
z1/2 + . . . , (D.6)
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and now we must solve for y(z, ω), y†(z, ω), and a(z, ω), which must be regular at both the

boundary z = 0 and the horizon z = 1.

We want the QNM solutions for T near Tc, where the condensate 〈O〉 ∝ α/κ is small,

or equivalently Φ0(z) is negligible. We thus treat p(z) as a small correction to the solution

in the unscreened phase, that is, we use the background solution with Φ0(z) = 0 and

Q = −1/2, where

a0
t (z) = −1

2

(
−1 +

1

z

)
, (D.7)

and then determine p(z) by solving the equation of motion for the scalar, linearized about

the solution with Φ0(z) = 0 and eq. (D.7), which gives

p(z) = −
∣∣∣∣Γ
(

1 + i

2

)∣∣∣∣
2√ z

z + 1
P i−1

2

(
3z − 1

z + 1

)
, (D.8)

where Pν is a Legendre function of the first kind.

When T . Tc, we know from subsection 6.1 that the lowest QNM frequency ω∗ is

near the origin of the complex ω plane, and hence is also small. We thus expand y(z, ω),

y†(z, ω), and a(z, ω) in both ω and also α ∝ κ〈O〉,

y(z, ω)=

∞∑

n,m=0

ωnαmynm(z), y†(z, ω)=

∞∑

n,m=0

ωnαmy†nm(z), a(z, ω)=

∞∑

n,m=0

ωnαmanm(z),

(D.9)

so that now we must solve for the coefficients ynm(z), y†nm(z), and anm(z). For n = 0 and

m = 0,

y′′00 +

[
2p′

p
+
h′

h

]
y′00 = 0, ωz2

[
a′00 +

h′

h
a00

]
= 0, (D.10)

and y†00(z) obeys the same equation as y00(z). The only solutions regular at both the

boundary z = 0 and the horizon z = 1 are y′00(z) = 0, y†00

′
(z) = 0, and a00(z) = 0. For

higher values of n and m, the equations for the coefficients are inhomogeneous,

y′′nm +

[
2p′

p
+
h′

h

]
y′nm = Inm, z2

[
a′nm +

h′

h
anm

]
= Anm, (D.11)

where y†nm obeys the same equation as ynm, but with source I†nm. The sources Inm and

Anm depend only on solutions at lower order in n and m. For example, In0 = I†n0 =

−2a0
t
h a(n−1)0, which implies y′n0 = y† ′n0, which in turn implies An0 = 0. Furthermore,

A0m = 0 so that a0m = 0. Determining the sources Inm, I†nm, and Anm is straightforward

but unilluminating, so we will not present explicit results for them. However, the most

singular behavior possible at the horizon z = 1 is Inm ∝ (z − 1)−1, and similarly for I†nm
and Anm. As a result, solutions regular at the horizon z = 1 have the form

y′nm(z) = − 1

h(z) p2(z)

∫ 1

z
dz̄ h(z̄) p(z̄)2 Inm(z̄), anm(z) = − 1

h(z)

∫ 1

z
dz̄

h(z̄)

z̄2
Anm(z̄),

(D.12)
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where z̄ is a dummy variable, and y†nm
′
(z) obeys the same equation as y′nm(z), but with

Inm → I†nm. Regularity of a(z, ω) at the boundary requires

∫ 1

0
dz̄ h(z̄) p(z̄)2

(
I01(z̄)− I†01(z̄)

)
= 0, (D.13)

and a second condition, identical to eq. (D.13), but with I01 → I02 and I†01 → I†02. Regu-

larity of y(z, ω) at the boundary requires

∫ 1

0
dz̄ h(z̄) p(z̄)2

[
ω I01(z̄) + ω2 I02(z̄) + α2 I20(z̄)

]
= 0, (D.14)

while regularity of y†(z, ω) at the boundary requires a condition identical to eq. (D.14), but

with I01 → I†01, I02 → I†02, and I20 → I†20. However, using I20 = I†20, as mentioned above,

and the second regularity condition for a(z, ω), we can show that the regularity condition

for y†(z, ω) is equivalent to that for y(z, ω) in eq. (D.14). We are thus left with only

eq. (D.14), which will be satisfied only for certain values of ω. In particular, in our regime

of interest, with small ω and α, the solution of eq. (D.14) gives the lowest QNM frequency,

ω∗ ≈ −α2

∫ 1
0 dz̄ h(z̄) p(z̄)2I20(z̄)
∫ 1

0 dz̄ h(z̄) p(z̄)2I01(z̄)
. (D.15)

Performing the integrals in eq. (D.15) numerically, we find ω∗ ≈ −i 17α2. Given α ∝ κ〈O〉,
we have thus shown that for Q = −1/2, and in the T . Tc regime of the screened phase,

ω∗ ∝ −i〈O〉2, as advertised in subsection 6.1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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