16 research outputs found

    EURECA: European-Japanese microcalorimeter array

    Get PDF
    The EURECA project aims to demonstrate technological readiness of a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X, EDGE, and XEUS. The prototype instrument consists of a 5 × 5 pixel array of TES-based micro-calorimeters read out by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM) with digital base-band feedback. The detector array is cooled by a cryogen-free cryostat consisting of a pulse tube cooler and a two stage ADR. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.5 eV at 250 eV for read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected end 2008.This work was financially supported by the Dutch Organization for Scientific Research (NWO).Peer Reviewe

    [email protected]; phone +31 30 2535710; fax +31 30 2540860, www.sron.nl Space Telescopes and Instrumentation

    Get PDF
    ABSTRACT The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 x 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogenfree cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs, fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital electronics, etc. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Complex variation in habitat selection strategies among individuals driven by extrinsic factors

    Get PDF
    Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic movement on space use at the landscape scale, we investigate how movement and habitat selection vary among individuals and years in response to forage quality–quantity tradeoffs, environmental conditions, and variable annual climate. We evaluated the association of dynamic, biotic forage resources and static, abiotic landscape features with large grazer movement decisions in an experimental landscape, where forage resources vary in response to prescribed burning, grazing by a native herbivore, the plains bison (Bison bison bison), and a continental climate. Our goal was to determine how biotic and abiotic factors mediate bison movement decisions in a nutritionally heterogeneous grassland. We integrated spatially explicit relocations of GPS-collared bison and extensive vegetation surveys to relate movement paths to grassland attributes over a time period spanning a regionwide drought and average weather conditions. Movement decisions were affected by foliar crude content and low stature forage biomass across years with substantial interannual variation in the magnitude of selection for forage quality and quantity. These differences were associated with interannual differences in climate and growing conditions from the previous year. Our results provide experimental evidence for understanding how the forage quality–quantity tradeoff and fine-scale topography drives fine-scale movement decisions under varying environmental conditions

    EURECA - A European-Japanese micro-calorimeter array

    Get PDF
    Trabajo presentado como comunicación a la Conferencia "Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray" celebrada en Francia el 23 de Junio del 2008.The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 x 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogenfree cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs, fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital electronics, etc. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009.The authors acknowledge an ESA Technological Research Program contract for the development of TES-arrays and SQUIDs, being a significant support to the EURECA program. Also the recent ESA TRP contract for the development of SQUID-based electronics is of crucial importance for this work.Peer Reviewe

    Significant-Loophole-Free Test of Bells Theorem with Entangled Photons

    No full text
    Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bells theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bells inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74 x 10(-31), corresponding to an 11.5 standard deviation effect.Funding Agencies|program CoQuS of the FWF (Austrian Science Fund); EU Integrated Project SIQS; European Union Project QUIC [641122]; Spanish MINECO under the Severo Ochoa programme [SEV-2015-0522]; Project MAGO [FIS2011-23520]; Project EPEC [FIS2014-62181-EXP]; Catalan AGAUR SGR Grants [129, 1623]; European Regional Development Fund (FEDER) Grant [TEC2013-46168-R]; Fundacio Privada CELLEX; NIST Quantum Information Science Initiative; Austrian Academy of Sciences (OAW); European Research Council (SIQS) [600645 EU-FP7-ICT]; Austrian Science Fund (FWF) [SFB F40]; European Research Council Project AQUMET</p

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level
    corecore